Software Development Kit for Multicore Acceleration
Version 3.1

<|ll

Performance Tools Reference

SC34-2565-00

Software Development Kit for Multicore Acceleration
Version 3.1

<|ll

Performance Tools Reference

SC34-2565-00

Note
FBefore using this information and the product it supports, read the information in ['Notices” on page 73}

Edition notice

This edition applies to version 3, release 1, modification 0 of the IBM Software Development Kit for Multicore
Acceleration (Product number 5724-S84) and to all subsequent releases and modifications until otherwise indicated
in new editions.

This edition replaces SC33-8427-01.

© Copyright International Business Machines Corporation 2007, 2008.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Preface . .

About this pubhcatlon .

Supported platforms.

Supported languages

Beta-level (unsupported) env1ronments
Getting support

Related documentation

Chapter 1. Cell Broadband Engine
Performance Debugging Tool (PDT)
Introduction
Components high level descrlpt1on

Tracing facility.

Trace processing .

Visualization .
PDT tracing-facility package d1rectory structure

Configuring the PDT kernel module (Red Hat

Enterprise Linux (RHEL) 5.2 only) .

PDT example usage . .
Enabling the PDT tracing fac111ty for a new
application .

Compilation and apphcatlon bulldlng

Running a program with trace-enabled PDT

libraries .

Running a program w1th SPE profllmg
Configuring the PDT for an application run .
Using the tracing APT . ..

Essential definitions

Application programmer API

Library developer API. .
Installing and using the PDT trace fac1hty on the
x86_64 (Opteron) .

Using the PDT on Hybrld x86 example .
PDT Restrictions. .

Using the PDTR tool (pdtr command)

Chapter 2. Feedback Directed Program
Restructuring (FDPR Pro)

Introduction .
Input files .
Instrumentation and proﬁhng
Optimizations .
Instrumentation and optlmlzatlon optlons .
Profiling SPE executable files .
Processing PPE/SPE executable files .
Human-readable output .
Running fdprpro from the IDE
Cross-development with FDPR-Pro

© Copyright IBM Corp. 2007, 2008

. << 4 <4 < <

B W NN — — =

i~

. 19
.19
. 20
. 20
. 20
.21
.21
.21
.22
.23
.23

Chapter 3. OProfile

SPU profiling restrictions .
SPU report anomalies .

Chapter 4. Cell-perf-counter tool.

Chapter 5. Hybrid performance tools
Overview .
Requirements. .
Setting up and conflgurmg the performance tool
scripts . .
Hybrid tools descrlptlon .

CPC hybrid support

FDPR-Pro hybrid support

OProfile hybrid support .

PDT support for hybrid

PDTR support for Hybrid

Chapter 6. Performance tools example
FFT16M sample application .
Preparing and building for proflhng
Creating and working with profile data .
Collecting data with CPC.
Displaying the CPC report in VPA.
Collecting data with OProfile .
Displaying the OProfile report in VPA

Using FDPR-Pro to gather frequency information

Analyzing and displaying FDPR-Pro frequency
information in VPA. . .
Creating and working with trace data

Appendix A. PDT troubleshooting .
Appendix B. Related documentation .
Appendix C. Accessibility features.

Notices
Trademarks .
Terms and conditions .

Glossary .

Index

. 25
.25
.26

. 27

29

. 29
.29

. 30
.31
.32
. 34
. 36
. 39
.42

45

. 45
. 45
. 48
. 48
. 49
. 50
. 51

53

. 54
. 59

. 65

. 69

.7

. 73
.75
.76
. 77

. 83

iii

1V Cell/B.E.Performance Tools Reference

Preface

The IBM® Software Development Kit for Multicore Acceleration Version 3.1 (SDK
3.1) is a complete package of tools to enable you to program applications for the
Cell Broadband Engine™ (Cell/B.E.) processor. The Software Development Kit for
Multicore Acceleration is composed of development tool chains, software libraries
and sample source files, a system simulator, and a Linux® kernel, all of which fully
support the capabilities of the Cell Broadband Engine Architecture.

About this publication

This publication describes the various performance tools provided to optimize
your applications for the Cell Broadband Engine Architecture.

Supported platforms

Cell Broadband Engine Architecture applications can be developed on these
platforms.

* X86

* X86_64

* 64-bit PowerPC® (PPC64)
+ IBM BladeCenter® QS21
e IBM BladeCenter QS22

Supported languages

The supported languages are:

* C/CH++

e Assembler

¢ Fortran

* ADA (Power Processing Element (PPE) Only)

Note: Although C++ and Fortran are supported, take care when you write code
for the Synergistic Processing Units (SPUs) because many of the C++ and Fortran
libraries are too large for the 256 KB local storage memory available.

Beta-level (unsupported) environments

This publication contains documentation that may be applied to certain
environments on an "as-is” basis. Those environments are not supported by IBM,
but wherever possible, workarounds to problems are provided in the respective
forums.

Getting support

© Copyright IBM Corp. 2007, 2008

The SDK is supported through the CBEA architecture forum on the
developerWorks® Web site at Ihttp: / /www.ibm.com/developerworks/power/cell/ l

Commercial support from IBM is available if you purchased the SDK from
Passport Advantage®.

http://www.ibm.com/developerworks/power/cell/

The XL C/C++ compilers are supported through the XL compiler Web site. See
[http:/ /www.ibm.com /software /awdtools /xlcpp /support /|

The XL Fortran compiler is supported through the XL compiler Web site. See
[http:/ /www.ibm.com /software /awdtools/ fortran /support/|

This version of the SDK supersedes all versions of the SDK that were available
from alphaWorks®.

If you have a problem with the IBM BladeCenter QS21 or BladeCenter QS22 that
you think is caused by running the Barcelona Supercomputing Center kernel on
Fedora 9, report a bug to the public che-oss-dev@ozlabs.org mailing list. Archives
and subscription information for this list are available from fhttps:/ /ozlabs.org /|
[mailman /listinfo/cbe-oss-dev /| Since Fedora 9 is not a supported IBM product,
IBM provides no guaranteed reply or target dates for fixes for this configuration.
Commercial support is available for Red Hat Enterprise Linux (RHEL) 5.2.

Related documentation

vi

This topic helps you find related information.
Document location

Links to documentation for the SDK are provided on the IBM developerWorks Web
site located at:

|http://www.ibm.com/developerworks/power/cell/|

Click the Docs tab.
The following documents are available, organized by category:

Architecture

* Cell Broadband Engine Architecture
e Cell Broadband Engine Registers

» SPU Instruction Set Architecture

Standards

* C/C++ Language Extensions for Cell Broadband Engine Architecture

e Cell Broadband Engine Linux Reference Implementation Application Binary Interface
Specification

e SIMD Math Library Specification for Cell Broadband Engine Architecture

* SPU Application Binary Interface Specification

* SPU Assembly Language Specification

Programming

e Cell Broadband Engine Programmer’s Guide

* Cell Broadband Engine Programming Handbook
* Cell Broadband Engine Programming Tutorial

Library

* Accelerated Library Framework for Cell Broadband Engine Programmer’s Guide and
API Reference

Cell/B.E.Performance Tools Reference

http://www.ibm.com/software/awdtools/xlcpp/support/
http://www.ibm.com/software/awdtools/fortran/support/
https://ozlabs.org/mailman/listinfo/cbe-oss-dev/
https://ozlabs.org/mailman/listinfo/cbe-oss-dev/
http://www.ibm.com/developerworks/power/cell/

Basic Linear Algebra Subprograms Programmer’s Guide and API Reference

Data Communication and Synchronization for Cell Broadband Engine Programmer’s

Guide and API Reference

Example Library API Reference

Fast Fourier Transform Library Programmer’s Guide and API Reference
LAPACK (Linear Algebra Package) Programmer’s Guide and API Reference
Mathematical Acceleration Subsystem (MASS)

Monte Carlo Library Programmer’s Guide and API Reference

SDK 3.0 SIMD Math Library API Reference

SPE Runtime Management Library

SPE Runtime Management Library Version 1 to Version 2 Migration Guide
SPU Runtime Extensions Library Programmer’s Guide and API Reference
Three dimensional FFT Prototype Library Programmer’s Guide and API Reference

Installation

SDK for Multicore Acceleration Version 3.1 Installation Guide

Tools

Getting Started - XL C/C++ for Multicore Acceleration for Linux
Compiler Reference - XL C/C++ for Multicore Acceleration for Linux
Language Reference - XL C/C++ for Multicore Acceleration for Linux
Programming Guide - XL C/C++ for Multicore Acceleration for Linux
Installation Guide - XL C/C++ for Multicore Acceleration for Linux
Getting Started - XL Fortran for Multicore Acceleration for Linux
Compiler Reference - XL Fortran for Multicore Acceleration for Linux
Language Reference - XL Fortran for Multicore Acceleration for Linux

Optimization and Programming Guide - XL Fortran for Multicore Acceleration for
Linux

Installation Guide - XL Fortran for Multicore Acceleration for Linux
Performance Analysis with the IBM Full-System Simulator

IBM Full-System Simulator User’s Guide

IBM Visual Performance Analyzer User’s Guide

IBM PowerPC Base

IBM PowerPC Architecture Book

— Book I: PowerPC User Instruction Set Architecture

— Book II: PowerPC Virtual Environment Architecture

— Book 1II: PowerPC Operating Environment Architecture

e IBM PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual

Preface

vii

viili Cell/B.E.Performance Tools Reference

Chapter 1. Cell Broadband Engine Performance Debugging
Tool (PDT)

This section describes the Cell Broadband Engine (Cell/B.E.) Performance
Debugging Tool (PDT) usage, how to configure it, and how to enable the tool.

Introduction

Introduction to the Performance Debugging Tool

The Cell/B.E. environment enables several levels of parallelism:
* A cluster of Cell/B.E. processors executing a parallel application

* A Cell/B.E. running a parallel program that simultaneously utilizes the Power
Processor Element (PPE) and the eight Synergistic Processor Elements (SPEs)

* A PPE or an SPE utilizing the vector units

Writing applications that utilize such multilevel parallelism effectively, and
understanding the performance behavior of such a system, is a challenge. The
objective of the Cell/B.E. PDT is to provide programmers with a means of
analyzing the execution of such a system and tracking problems in order to
optimize execution time and utilization of resources.

This version of the PDT addresses performance debugging of one Cell/B.E.
processor with two PPEs that share the main memory, run under the same Linux
operating system, and share up to 16 SPEs. The PDT also enables event tracing on
the x86_64 (Opteron) as well as the Hybrid environment..

Performance analysis is usually based on profiling or tracing. The PDT provides
tracing means for recording significant events during program execution and
maintaining the sequential order of events. The main objective of the PDT is to
provide the ability to trace events of interest, in real time, and record relevant data
from the SPEs and PPE. This objective is achieved by instrumenting the code that
implements key functions of the events on the SPEs and PPE and collecting the
trace records. This instrumentation requires additional communication between the
SPEs and PPE as trace records are collected in the PPE memory. Tracing 16 SPEs
using one central PPE might lead to a heavy load on the PPE, and therefore, might
influence the performance of your application. The PDT is designed to reduce the
tracing execution load and provide a means for throttling the tracing activity on
the PPE and each SPE. In addition, the SPE tracing code size is minimized so that
it fits into the small SPE local store.

Tracing is enabled at the application level (user space). After the application has
been enabled, the tracing facility trace data is gathered every time the application

runs.

Note: Tracing can produce a very large amount of data.

Components high level description

The Cell/B.E. PDT package contains a tracing facility and a trace analyzer (TA)
which is part of the Visual Performance Analyzer (VPA) tool.

© Copyright IBM Corp. 2007, 2008 1

In addition to the TA, other tools may process and analyze the trace files generated
by the tracing facility. The SDK includes the PDT trace Reader/post-processor
(PDTR) tool that provides trace-event listings and various summary reports,
including lock analysis.

Tracing facility
How to enable tracing of events.

The following SDK libraries have trace-enabled versions available, that you can use
for event tracing:

* On the PPE: DaCS, ALF, libspe2, and libsync

* On the SPE: DaCS, ALF, libsync, the spu_mfcio header file, and the overlay
manager

* On X86_64 (Opteron): DaCS and ALF

Performance events are captured by the SDK functions that are already
instrumented for tracing. These functions include:

* SPEs activation

* DMA transfers

* Synchronization

* Signaling

* User-defined events

A full list of events is found in the reference configuration file of PDT. You must
compile and link statically-linked applications with the trace-enabled libraries. You
do not need to rebuild applications which use shared libraries.

Note: The SPE code is always statically linked, and therefore must be recompiled
and linked.

Before each application run, you can configure the PDT to trace events of interest.
You can also use the PDT API to dynamically control the tracing.

During the application run, the PPE and SPE trace records are gathered in a
memory-mapped (mmap) file in the PPE memory. These records are written into the
file system when appropriate. The event-records order is maintained in this file.
The SPEs use efficient DMA transfers to write the trace records into the mmap file.
The trace records are written in the trace file using a format that is set by an
external definition (using an XML file). The PDTR and TA tools, that use PDT
traces as input, use the same format definition for visualization and analysis.

Trace processing

The TA processes the trace for analysis and visualization. This processing generates
interval records from some of the event records in the trace (for example, SPE
thread life intervals, wait intervals, and so on) as well as adding context
parameters (for example, estimated wall clock time, unique SPE thread IDs, and so
on) to individual records.

The SDK also provides the PDTR Trace Analyzer program. This command-line tool
runs natively on the Cell/B.E.and is provided to view and post-process PDT traces
(which enables local PDT trace analysis). The PDTR tool provides both sequential
and event-by-event PDT trace text output. It also provides postprocessing
summary reports based on specific instrumentation events.

2 Cell/B.E.Performance Tools Reference

Visualization
Traces can be viewed with the Eclipse-based VPA tool using the Trace Analyzer
perspective. This tool provides a means for graphical and textual visualization of
trace events over time. You can view the details that have been recorded in the
trace for each event.

The graphical timeline view in the trace visualization has time as the x axis, and
the PPE and SPEs as rows in the y axis. Each event interval is shown as a colored
bar the width of which represents its time duration. The colors in the color legend
determine the type of event interval. The following figure is a snapshot of the TA
GUI for the FFT16M workload.

& Trace Analyzer - fft16m—200?08?*1 090852.pex - Eclipse 5DK
File Edit Navigate Search Froject FieldAssist “Run Window Help
Hoil LA R R hleaaay

B (Ghmigator 5 =0

: T e

&

183000000 J184000000

Execution stage

characterized by longer
stalls K
T TR A
L
Stall durations are very h
large
y \ _
[3 »fft16m-2007082202
72 > F Am-PNTRRIND. T \
< T > SR
ETraceTable 52 .. [© —0O)
: || sPes
Trace file: | 0 in Ciiworkitraces\PeTrac
v |5q0 A rernids ot of SFES &
next 500 || prev 500 ® Record Detailsyil = B M Color Map View & =g
SPE_MFC_READ STATUS 222807 — 1
Index Record type Record =i ek = & Color Map: | EEM1 v
23455 SPE_MFC_READ T.. 22800 || Name Value p
23456 SPE_MFC_READ_T.. 22801 || EventName SFE_MFC_READ_TAG_STATUS | name
23457 SPE_MFC_READ_T... 22802 | Durstion FA || & mrco
23458 SPE_MFC_READ_T.. 22803 | (Coreld 2 # LBSPE2
23450 SPE MFC_READ T.. 22804 || Timerld 2% | ® GEMERAL
23460 SPE_MFC_READ_T... 22805 | StertTime_ 182140747 e
23461 SPE_MFC_READ T.. 22805 | EndTime_ Shaisaid .
23462 SPE_MFC_READ T.. 22807 || ¢ = | s [l
= L = =2 |h -

Figure 1. Trace Analyzer GUI for the FFT16M workload

The textual trace overview lists all the PPE and SPE events in order of appearance
in the trace. If you select an event, it is highlighted the graphical timeline view and
the fields of the event record are displayed in the record details view.

For additional information about trace visualization, refer to the IBM Visual
Performance Analyzer User Guide available from IBM alphaWorks:

|http://www.alphaworks.ibm.com/tech/vpal

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 3

http://www.alphaworks.ibm.com/tech/cellsw

PDT tracing-facility package directory structure

The tracing-facility package is part of the SDK. Use the following tables to locate
the directories for the tracing-facility package.

Table 1. Tracing-facility directories on a Cell/B.E.

system

Use

Cell/B.E. Host

PDT development trace includes /usr/include/trace
PDT production trace libraries /usr/lib/trace
PDT production trace 64 bit libraries /usr/lib64 /trace

PDT SPU development trace includes

/usr/spu/include/trace

PDT SPU development trace libraries

/usr/spu/lib/trace

PDT configuration

/usr/share/pdt/config

PDT examples

/opt/cell/sdk/src/pdt-cell-examples.tar

Table 2. Tracing-facility directories on a cross system

Use

Cross x86 to Cell/B.E.

PDT development trace includes

/opt/cell/sysroot/usr/include/trace

PDT production trace libraries

/opt/cell/sysroot/usr/lib/trace

PDT production trace 64 bit libraries

/opt/cell/sysroot/usr/lib64/trace

PDT SPU development trace includes

/opt/cell/sysroot/usr/spu/include/trace

PDT SPU development trace libraries

/opt/cell/sysroot/usr/spu/lib/trace

PDT configuration

/opt/cell/sysroot/usr/share/pdt/config

PDT examples

/opt/cell/sdk/src/pdt-cell-examples.tar

Table 3. Tracing-facility directories on an X86_64 (Opteron) system

Use Opteron Host
PDT development trace includes /usr/include/trace
PDT production trace libraries /usr/lib/trace
PDT production trace 64 bit libraries /usr/lib64/trace

PDT configuration

/usr/share/pdt/config

PDT examples

/opt/cell/sdk/src/pdt-opteron-
example.tar

Configuring the PDT kernel module (Red Hat Enterprise Linux
(RHEL) 5.2 only)

The PDT kernel module is a Linux-extension-kernel module that allows the PDT to
be synchronized with the Linux SPE context switches. The kernel module is

compiled and linked in the pdt.ko file, and
directory.

is shipped in the /usr/1ib/modules/

The application loads the PDT kernel module before the tracing starts and removes
it when the application ends. Because module insertion and removal require super
user (root) permissions, this operation requires the sudo facility. The call to the sudo

facility is integrated within the PDT.

4 Cell/B.E.Performance Tools Reference

To install the facility, update the /etc/sudoers file, using the visudo editor, as
follows:

ALL ALL=(ALL) NOPASSWD: /sbin/insmod /usr/Tib/modules/pdt.ko, /sbin/rmmod pdt

Note:

1. If an application terminates abnormally, the kernel module remains loaded. It is
removed at the next run, and a new instance is inserted.

2. The context switch notification for RHEL 5.2 is implemented so that only one
user can activate the tracing facility at a time. Therefore, multiuser usage is
forbidden, but there is no protection against it.

3. If the kernel module is not installed, the TA does not show the SPE utilization
correctly because the events are not aligned in time; however, a trace is created.

4. The kernel module is not required in Fedora 9 or newer versions.

PDT example usage

The PDT package contains a sample application in the /opt/cel1/sdk/src/pdt-
cell-examples.tar file. After installation, it is recommended that you compile and
run the application, and then use the TA and PDTR tools to examine the PDT
output.

Each example includes a pdt script file that you can use to compile and run an
available application. You can also study the script as a usage example, or
modified it to run your own applications. For example, use the SDK make. footer
file or an explicit Makefile. You can use the Makefile provided with the examples
as a reference. It contains a sample configuration file, and a full reference
configuration file named pdt_cbe_configuration.xml is located in the
/usr/share/pdt/config directory. Copy the configuration file to your working
directories and modify it as needed.

Enabling the PDT tracing facility for a new application

How to enable tracing in your application.

The PDT tracing facility is designed to minimize the effort that is needed to enable
the tracing facility for a given application. In most cases, no code changes or
additions are necessary. However, because the SPE code is statically linked and the
PDT uses a different spu_mfcio.h file, you must recompile the SPE code. In
addition, if the SPE executable is embedded in the PPE code, you must relink the
PPE code.

Compilation and application building

You only need to change your source code if user-defined events or dynamic-trace
control are used. For a cross-development environment, root (/) is defined as
/opt/cell/sysroot/.

The examples provided as part of the PDT package can be used as reference to the
following sections.

Compiling SPE code
How to compile SPE code

To compile SPE code, do the following:
1. Add the following compilation flags to your Makefile:

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 5

-Dmain=_pdt_main -Dexit=_pdt_exit -DMFCIO_TRACE

Note: Add -DLIBSYNC_TRACE if any libsync function (from the libsync.h include
file) is used inline.

2. Add the compiler include option (-I/usr/spu/include/trace) as the first
location in the compile command line.

3. Add the libtrace.a library (from the /usr/spu/lib/trace directory) and any
other instrumented libraries, to the linkage of the executable file.

4. If overlays are used, add spu_ovl.o (from the /usr/spu/lib/trace directory) to
the spu linking stage.

Certain SPU applications, in combination with certain libraries, may present a
linking problem when using the PDT. For example, when instrumenting with the
PDT, an SPU application that uses a wrapping library (such as ALF), can create a
circular dependency. The solution is to specify the trace library twice: once before
the wrapping library and once after it. For example:

spu-gcc -0 alf_hello _world _spumain_spu.o -L/usr/spu/lib/trace -Ttrace \
-lalf -L/usr/spu/lib/trace -W1, -N -1trace

You can also use the following option to enable the linker for circular-dependencies
search:

-W1,-\(-lalf -Ttrace -W1,-\)

The following two statements give you more examples of how to compile SPE
code.
spu-gcc -0 -c spe_test.c -W -Wno-main -g -I/usr/spu/include/trace \
-Dmain=_pdt_main -Dexit=_pdt_exit -DMFCIO_TRACE -DLIBSYNC_TRACE \
-I. -I/opt/cell/sdk/usr/spu/include
spu-gcc -0 spe_test.o -o spe_test -W -Wno-main -g \
-I/usr/spu/include/trace -Dmain=_pdt main -Dexit=_pdt exit \
-DMFCIO_TRACE -DLIBSYNC_TRACE -I. -I/opt/cell/sdk/usr/spu/include \
-W1,-N -W1,-q -L/usr/spu/lib/trace -1trace

Compiling PPE code
Compilation of the PPE code is needed only if the tracing API is used in the
program or when inline instrumented library functions are used.

To compile PPE code, do the following;:

1. If any libsync functions (from the libsync.h include file) is used inline, add the
following compilation flags to your Makefile:

-DLIBSYNC_TRACE

2. Add the compiler include option (-I/usr/include/trace) as the first location in
the compile command line.

3. Add the -L/usr/Tib/trace (or -L/usr/11b64/trace for 64 bit applications) flags
to the linkage process. If using the trace-enabled libsync,also add
-L/opt/cell/sdk/usr/1ib[64]/trace

To enable the Trace Analyzer to link between events and the source code, rebuild
the application using the linking relocation flags (for SPE and PPE). Use the -g flag
for compilation and the -g -W1,-q flags for linking. Do not use the -s stripping
option.

A linking problem may occur when some SPU applications are combined with
certain librarie whenusing the PDT. For example, when instrumenting with the
PDT, an SPU application that uses a wrapping library, such as ALF, can create a

6 Cell/B.E.Performance Tools Reference

circular dependency. The solution is to specify the trace library twice: once before
the wrapping library and once after. For example:

spu-gcc -0 alf_hello world spumain_spu.o -L/usr/spu/lib/trace -Ttrace \
-1alf -L/usr/spu/lib/trace -W1, -N -ltrace

An alternative is to use the following option to enable the linker for
circulate-dependencies search:

-W1,-\(-Talf -1trace -W1,-\)

Running a program with trace-enabled PDT libraries

The PDT package provides a script file called pdt which is located in the pdt
examples tar file, /opt/cell/sdk/src/pdt-examples.tar. You can use it to compile
and run trace-enabled applications, or refer to it as a reference to the following
explicit instructions.

You can copy the pdt script to your development environment, modify it if
necessary, and run it. Here are the usage instructions for this:

pdt [options] execution_file [execution_parameters]

OPTIONS
-h
Print help

-m [[-f make_file_ name] -b [32 | 64]]

Build the application after clean, using Makefile or the optional make_file_name.
Compilation target architecture width can be provided using the -b option (32 or 64 bits).
Default is 64 bits. This option is based on the use of the COMPILATION_BITS enevironment
variable in the make file.

-c configuration_file
Set the PDT configuration file for this run. Default is
/usr/share/pdt/config/pdt_cbe_configuration.

-0 output_directory
Set the output directory for the trace files. Default is the current directory.

-p prefix
Set the prefix for the trace files. Default is none (use the prefix that is set
in the configuration file).

To enable the program to use the PDT libraries after the rebuild process, do the
following:

1. Set the following environment variables for the PDT before you run the
program:

LD_LIBRARY_PATH
This is a colon separated list of directories that the runtime loader
search for libraries. The full path to the trace library location is
required: /usr/lib/trace (or /usr/lib64/trace for 64 bit applications).

Add also the directories of other trace-enabled libraries such as libsync,
located in /opt/cell/sdk/usr/lib/trace (or /opt/cell/sdk/usr/lib64/
trace for 64 bit applications). The list is colon separated. For example,
LD_LIBRARY_PATH=/usr/1ib64/trace:/opt/cell/sdk/usr/1ib64/trace.

PDT_CONFIG_FILE
The full path to the PDT configuration file for the application run. The
PDT package contains a pdt_cbe_configuration.xml file in the
/usr/share/pdt/config directory that can be used without
modification, or copied and modified for each application run. For

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 7

more information on PDT configuration, see [“Configuring the PDT for|
lan application run” on page 9| below.

PDT_TRACE_OUTPUT (optional)
The full path to the PDT output directory. The directory must exist
before the application runs.

PDT_OUTPUT_PREFIX (optional)
This variable is used to add a prefix to the PDT output file names.

2. Modify the pdt configuration file for the application, if desired.
3. Run the program.

The PDT libraries produces trace files in a directory that is defined by the
environment variable PDT_TRACE_OUTPUT. If this environment variable is not
defined, the output location is taken from the definition provided by the
output_dir attribute in the PDT configuration file. If neither is defined, the current
path is used. The output directory must exist before the application runs, and the
user must have write access to this directory. PDT creates the following files in that
output directory at each run.

Table 4. Output directory files

File Name Description

<prefix>-<app_name>- Meta file of the trace event definitions
yyyymmddhhmmss . pex

<prefix>-<app_name>- This is a copy of the maps file from /proc/<pid>/. It

yyyymmddhhmmss .maps is used for address-to-name resolution done by the
PDTR tool (pdtr command).

<prefix>-<app_name>- Trace file or files

yyyymmddhhmmss .<N>.trace

Note:

1. <prefix> is provided by the optional PDT_OUTPUT_PREFIX environment variable.

2. <app_name> is a string provided in the PDT configuration file application_name
attribute.

3. yyyymmddhhmmss is the date and time when the application started (trace_init() time).

4. <N> is the sequential number of the trace file. The maximum size of each trace file is 32
MB.

Running a program with SPE profiling

The PDT libraries provide an option to produce event records by profiling SPE
programs. You can profile PPE programs with oProfile. The PDTR tool has the
ability to process these records and show the profile information.

To perform SPE profiling on a program, do the following;:
1. Compile your program with the Tracing Facility enabled.

2. Activate profiling in the SPE. To do this, modify the configuration XML file as
follows:

a. Locate the SPE <configuration name="SPE"> tag.

b. Under the that tag, set the profile statement to <profile active="true"
rate="100"/>.

¢. The profiling sampling rate that is set here is limited to 20000 samples per
second. Minimize other event tracing during profiling at rates higher than
2000 samples per second.

8 Cell/B.E.Performance Tools Reference

3. Run your program, then run the PDTR tool on the trace results.

Note: When you use SPE profiling with PDT, ensure that atomic and DMA
operations in application code and any library code in use are interrupt safe.
Disable interrupts during these operations.

Configuring the PDT for an application run

An XML configuration file is used to configure the PDT. The PDT tracing facility
that is built into the application at run time reads the configuration file defined by
the PDT_CONFIG_FILE environment variable. The /usr/share/pdt/config
directory contains a reference configuration file, pdt_cbe_configuration.xml. Copy
this file and modify it for the requirements of your application.

If you have installed the DaCS, ALF, or libsync libraries, the /usr/share/pdt/
config directory contains additional reference configuration files for each installed

library.

Table 5. Reference files for additional libraries
Reference file Library
pdt_dacs_config_cell.xml DaCS
pdt_dacs_config_hybrid.xml DaCS for Hybrid
pdt_alf_config_cell.xml ALF
pdt_alf_config_hybrid.xml ALF for Hybrid
pdt_libsync_config.xml libsync

The first line of the configuration file contains the application name. This name is
used as a prefix for the PDT output files. To correlate the output name with a
specific run, the name can be changed before each run. The PDT output directory
is also defined in the output_dir attribute. This location will be used if the

PDT TRACE_OUTPUT environment variable is not defined.

The first section of the file, <groups>, defines the groups of events for the run. The
events of each group are defined in other definition files (which are also in XML
format), and included in the configuration file. These files reside in the
/usr/share/pdt/config directory. They are provided with the instrumented library
and you should not modify them. Each of these files contains a list of events with
the definition of the trace-record data for each event. Note that some of the events
define an interval with StartTime and EndTime, and some are single events in which
the StartTime is 0 and the EndTime is set to the event time. The names of the
trace-record fields match the names defined by the API functions, and each event
is related to an API function. There are two types of records: one for the PPE and
one for the SPE. Each of these record types has a different header that is defined in
a separate file: pdt_ppe_event_header.xml for the PPE and
pdt_spe_event_header.xml for the SPE.

The SDK provides instrumentation for the following libraries. The traced events
with a description of each record are provided in the following XML files:

GENERAL (pdt_general.xml)
These are the general trace events such as trace start, trace stop, etc.
Tracing of these events is always active.

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 9

LIBSPE2 (pdt_lbspe2.xml)
These are the LIBSPE2 events.

SPU_MEFCIO (pdt_mfcio.xml)
These are the spu_mfcio events that are defined in the
/usr/spu/include/trace/spu_mfcio.h header file.

LIBSYNC (pdt_libsync.xml)
These are the mutex events that are part of the libsync library.

DACS (pdt_dacs*.xml)
These are the DaCS events, separated into three groups of events. For more
information, see the [Data Communication and Synchronization|
[programmer’s guide and API reference]

ALF (pdt_alf*.xml)
These are the ALF events, separated into three groups of events. For more
information, see the [Data Communication and Synchronization|
[programmer’s guide and API reference]

The second section of the file contains the tracing control definitions for each type
of processor. The PDT is made ready for the hybrid environment so each processor
has a host, <host>. On each processor, several groups of events can be activated in
the group control, <groupControl>. Each group is divided into subgroups, and each
subgroup, <subgroup>, has a set of events. Each group, subgroup, and event has an
active attribute that can be either true or false. This attribute affects tracing as
follows:

 If a group is active, all of its events will be traced.

 If a group is not active, and the subgroup is active, all of its subgroup’s events
will be traced.

 If a group and subgroup are not active, and an event is active, that event will be
traced.

You can create new group of events for new libraries that are in use. Defined these
groups using XML files like those above. Give each group a unique name and ID.
Once created, add them to the other files in the /usr/share/pdt/config directory.
Next, add a reference to these group to the two sections in the configuration file
used by the application. Instrument the libraries using the library developer API
functions described below,

Note: It is highly recommended that tracing be enabled only for those events that
are of interest. Depending on the number of processors involved, programs might
produce events at a high rate. If this scenario occurs, the number of traced events
might also be very high.

Using the tracing API

The tracing API used by the PDT is a generic APL It enables any implementation
of a tracing facility: the PDT is only one possible implementation. For example,
you can implement a tracing facility that only prints a trace.

The PDT API is intended for library developers who want to add the tracing
facility to their libraries. Because tracing is done invisibly to users, application
programmers use only a subset of the API. This subset provides an interface for
user defined events and dynamic trace control.

10 Cell/B.E.Performance Tools Reference

http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html
http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html
http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html
http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html

Essential definitions

The trace basic_defs.h and trace_defs.h files contain the definitions for the PDT
API parameters located in the /usr/include/trace directory.

Application programmer API

Use this API only if you want to create user defined events records in a trace, or if
you need dynamic trace control at run time.

User-defined events
These APIs are for user-defined events.

Include the trace_user.h file in your program.

void trace_user_event(trace_payload_p payload)
This function writes a trace record with the provided payload. The user
event ID is defined by the user and should be the first element (long) in
trace_ payload_t, pointed by payload. On the SPE, the payload array must
be aligned on a 16-byte boundary.

trace_interval_p trace_user_interval_entry()
This function initiates a user-defined interval that terminates when
trace_user_interval_exit() is called. This function does not write a trace
record. The function returns a pointer to trace_interval type that must be
used as a parameter to the trace_user_interval_exit() function.

void trace_user_interval_exit(trace_interval_p user_interval, trace_payload_p
payload)
This function terminates a user-defined interval that was initiated by
trace_user_interval_entry(). The trace_user_interval_entry() function
provides the trace interval pointer. This function writes a trace record with
the provided payload. On the SPE, the payload array must be aligned on a
16-byte boundary.

Dynamic trace control
These APIs control which events are traced at run time.

Include the trace_dynamic.h file in your program.

void trace_event_control(trace_event_id_t event_id, trace_bool_t value);
This API changes the control state of an event according to the requested
value: trace_false = off or trace_true = on. The event IDs are provided
in the events-groups XML files.

void trace_group_control(trace_group_t group, trace_bool_t value);
This API changes the state of all the group’s events according to the
requested value: trace_false = off or trace_true = on. The event IDs are
provided in the events-groups XML files.

trace_bool_t trace_event_get_control(trace_event_id_t event_id);
This API returns the current control state of an event.

Generic profiling interface with user defined payload
The PDT enables an application to activate a generic profiling. This service allows
the application to define a set of variables to be periodically recorded in the trace.

Include the trace_profile.h header file in your application.

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 11

Service activation interface

Syntax:

trace_profile _handle trace_profile register(
trace_event_id_t event_id, int tm_sec,
void (xcallback)(trace_payload_p payload ptr)

The following table shows the interface parameters.

Table 6. trace_profile_handle trace_profile_register parameters

Parameter Explanation

event_id The event ID that has been defined in the group.

tm_sec An interval in 1 millisecond units.

callback A callback function that is called by the service with two

output parameters, to be filled by the callback function.

payload_ptr A pointer to the trace record payload of size trace_payload_t
which is defined as 80 characters. The callback function should
fill the payload with data.

The function returns the frace_profile_handle handle to be used for service control.
NULL is returned if the registration failed.

Service termination interface
Syntax:
void trace_profile_unregister(

trace_profile_handle handle)

The following table shows the interface parameters.

Table 7. trace_profile_unregister parameters

Parameter Explanation

handle The handle returned by the trace_profile_register() function.

Profile trace start interface

Syntax:
void trace_profile_start(trace_profile_handle handle)

Profile trace pause interface

Syntax:
void trace_profile_pause(trace_profile_handle handle)

Using the trace functions

Setting a callback function through this API enables this function to manage the
recorded information as you require, for example to gather data from various
sources and use mutex operation if necessary.

You can activate several profiling intervals, but the resource usage is high. It's best
to use only one interval, or one service activation per run. Because the profiling

12 Cell/B.E.Performance Tools Reference

time resolution is 1 msec, we recommend that you use an interval of more than 10
msec (profiling of less than 100 times a second) to reduce the influence of the
profiling code on your application.

On the SPE, the profiling timing is based on the SPU timer which enables up to
four intervals, while the application can use some or all of those intervals. Take
care in using this resource.

Library developer API

An extended API is provided for library developers. This API is used to instrument
a library with generic tracing code. A library may be assigned with one or more
groups of events. Each group ID should be obtained from IBM. This requirement
enables the usage of any combination of groups in the same run. The PDT can
handle up 256 groups: currently 10 groups are in use. Each group can have up to
64 events.

Trace facility control
Use this function to initiate the tracing facility.

Include the trace_control.h header file in your applications.

void trace_init(void);
This function initiates the tracing facility. Call it before you call any traced
event. You can call it more than one time within an application, but it will
be activated only once.

Events recording
Use these functions to create a single trace record and a trace record that defines
an interval.

long trace_event(trace_event_id_t event_id, int argc, trace_payload_p payload,
const char *format, unsigned int level);
This function writes a trace record with the provided payload and returns
an event count. On the SPE, this array must be aligned on a 16-byte
boundary.

event id
This is the event identifier. In the PDT, the event id is combined
from the group id (one byte) and the specific id within this group
(0-63).

argc The number of parameters in the payload.

format
A string that describes the payload parameters using printf format.

pavload
A pointer to the data to be recorded in the trace record.

level The number of calls from the application until this function is
called. It enables the tracing facility to provide the program
counter at the application level in order to link between the event
and the source code.

This function returns a sequential event count.

trace_interval_p trace_interval_entry(trace_event_id_t event_id, unsigned int
level); This function initiates an interval that terminates when trace_interval_exit()
is called. This function does not write a trace record.

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 13

event id
This is the event identifier. In the PDT, the event id is combined
from the group id (one byte) and the specific id within this group
(0-63).

level The number of calls from the application until this function is
called. It enables the tracing facility to provide the program
counter at the application level in order to link between the event
and the source code.

The function returns a pointer to a trace_interval type that must be used as
a parameter to the trace_interval_exit function.

long trace_interval_exit(trace_interval_p interval, int argc, trace_payload_p
payload, const char *format);
This function terminates an interval that was initiated when
trace_interval_entry() was called. The pointer to the trace interval type is
provided by the trace_interval_entry() function.

Interval
This pointer to the trace_interval type is provided by the
trace_interval_entry() function.

argc The number of parameters in the payload.

format
A string that describes the payload parameters using printf format.

pavload
A pointer to the data to be recorded in the trace record.

This function writes a trace record with the provided payload. On the SPE,
this array must be aligned on a 16-byte boundary. The function returns a
sequential event count.

Note: On the SPE, interrupts are disabled during the functions that create trace
records. This is essential because the interrupts handler may create a traced event
that can override the record creation.

Define event and interval class

The additional trace record attribute pdtRecordClass is enabled as an option. This
attribute states the event or interval record class. The class enables the trace
analyzer (PDTR or TA) to perform special processing on the events of the same
class.

You can define the following types of classes (lowercase):

blocking_wait_interval
An interval caused by a blocking event

busy_wait_interval
A polling interval

working_interval
While processing is performed

user_interval
Allow summarization of user intervals

profile_event
Direct the Trace Analyzer to provide a graphical timeline visualization of
the payload data

14 Cell/B.E.Performance Tools Reference

You can define additional classes.

The following is the addition to the record definition in the XML file:
<recordType ... pdtRecordClass="blocking wait_interval" ... >

Installing and using the PDT trace facility on the x86_64 (Opteron)

The tracing-facility package on the x86_64 is almost identical to the one used on
the PPE. Events tracing is enabled by instrumenting selected function of the DaCS
and ALF SDK libraries.

Table 8. Tracing-facility directories on x86_64

Use Host X86

PDT development trace includes /usr/include/trace
PDT production trace libraries /usr/lib/trace
PDT production trace 64 bit libraries /usr/lib64/trace

The /usr/share/pdt/config directory contains reference configuration files for
applications that are use the DaCS and ALF libraries: pdt_dacs_config_hybrid.xml
for DaCS and pdt_alf_config_hybrid.xml for ALE. The instrumented libraries are
part of ALF and DaCS packages.

The instrumented events for the X86_64 libraries are defined in the following files:

GENERAL (pdt_general.xml)
These are the general trace events such as trace start, trace stop, and so on.
Tracing of these events is always active.

DACS (pdt_dacs*.xml)
These are the DaCS events (separated into two groups of events). Refer to
the [Data Communication and Synchronization programmer’s guide and]

|API referencgl for more details.

ALF (pdt_alf*.xml)
These are the ALF events (separated into two groups of events). Refer to
the [Data Communication and Synchronization programmer’s guide and|

|API referencgl for more details.

Using the PDT on Hybrid-x86 example

The PDT package contains a sample application in the /opt/cell/sdk/src/pdt-
opteron-example.tar file. After installation, compile and run the example, then
examine the PDT output using the TA and PDTR tools.

The example directory contains a Makefile that you can use as a reference, and a
pdt script file that is similar to the one used for the Cell/B.E. environment. A set of
full-reference-configuration files (pdt_x86_64_configuration.xml) is provided in the
/usr/share/pdt/config directory. You can copy these files to user directories and
modify them as necessary. The trace files that are produced during the application
run have the same characteristics as those generated on the PPE.

Note: When an application is run on a hybrid environment using DaCS or ALF,

the time on each processor in the hybrid system must be synchronized by the
operating system. Accurate time synchronization is required to compare traces

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 15

http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html
http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html
http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html
http://publib.boulder.ibm.com/infocenter/systems/topic/eicck/eicckkickoff.html

from each processor in the hybrid system. The trace data contains "heart beats”
that record the time of day. These heart beats can be used by the TA and other
tools to synchronize the traces.

PDT Restrictions

The PDT has certain restrictions

The following restrictions apply to using the PDT.

* The context-switch notification on Red Hat Enterprise Linux (RHEL) 5.2 is
implemented so that only one user can activate the tracing facility at a time.
Therefore, RHEL 5.2 multiuser usage of PDT is forbidden, but there is no
protection against it.

* The PDT and Oprofile cannot be used at the same time.

* For SPE applications, the SPU tag manager must be used for DMA-tag control.

* If decrementer usage is needed, use the spu_timer APL Do not directly modify
the SPU decrementer during the run.

The following restrictions apply to using the Opteron PDT.

* PDT on Opteron is using the RDTSCP to atomically read the TS register with the
processor ID. AMD processors former to the AMD NPT Family 0Fh do not
provide atomic reads of TS and physical processor ID. Therefore, on older
processors it is not possible to guarantee that a thread will not be switched out
between consecutive reads of these data elements with two instructions. As a
result, PDT on Opteron is limited to the AMD NPT Family OFh processors or
newer.

Using the PDTR tool (pdir command)
About this task

The PDTR tool (pdtr command) is a command-line tool that provides both viewing
and postprocessing of PDT traces on the target (client) machine. To use this tool,
you must instrument your application by building it with the PDT. After the
instrumented application has run and created the trace output files, the pdtr
command can be run to show the trace output. For example, given PDT
instrumented application output files:

20070604073422 . pex (the xml trace meta file)
20070604073422.1.trace (the binary trace data)
20070604073422 .map (Tong strings data)
20070604073422 .maps (copy of /proc/<pid>/maps data)

use the pdtr command to generate text-based output for this trace as follows:
pdtr [options] 20070604073422

which produces:
20070604073422.pep

Calling pdtr with no arguments produces a usage summary:
pdtr [options] name

-trc Sequential per-event trace output

-trco Sequential reduced trace output
-meta Dump meta file output (name.meta)
-map Dump address maps

16 Cell/B.E.Performance Tools Reference

Rec#

-ip path Full path to trace input files

-op path Full path to output files

-tb TB Use timebase frequency TB

-w level Set the warning level for unaligned or small DMAs

-sw Suppress warnings

-z Show zero count events

-dc Disable repetative event compression

-sf 1spe Include output for only Togical spe Ispe
-psc Per spe profile counts

-mp Enable spe micro-profiling

Where name is the PDT trace prefix, for example foo for trace foo.pex, foo.maps,
foo.l.trace.

The pdtr output file contains a summary report for preselected events, such as
mutex locking and DMA. If you use the optional -trc flag, the file will also
include a time-stamped event-by-event sequential-trace listing. The following
example is a partial sequential-output trace.

Trace FiTe(S) =mmmmmmm oo oo
TimeStamp DeltaTime Proc EvID EventName Event Parameters ...

1 0.000000 0.006ms PPE

2

38

39

40

45

1.035853 1035.853ms PPE 0200 HEART_BEAT EventID=200 Processor=2 PhysicalID=0 EventCount=1
CallingThread=F53DF4B0 StartTime=101248800FFAOBO8 EndTime=BABA597C8E7 ProgramCounter=FF8A788
time_of_day=DBCO600000000

1.045290 9.436ms PPE 0001 CONTEXT_CREATE EventID=1 Processor=2 PhysicalID=0 EventCount=2
CallingThread=F6F8F4B0 StartTime=F7FA3150F7FA3150 EndTime=BABA599D8AB ProgramCounter=10001C50
gang=0 spe=100202C8 flags=0 run_spu_thread()

98 6.845us SPE 0302 SPE_MFC_GET EventID=302 Processor=3 PhysicalID=0 EventCount=2
SPEcontext=100202C8 StartTime=0 EndTime=6D PPEcreateContextEventCount=12 ProgramCounter=1754
€a=6D80 1s=10012680 size=80 tagid=1E tid=0 rid=0 main() 1spe=1 Size: 0x80 (128), Tag: Oxle (30)

111 0.908us SPE 1202 SPE_MFC_READ_TAG_STATUS EventID=1202 Processor=3 PhysicalID=0
EventCount=3 SPEcontext=100202C8 StartTime=70 EndTime=7A PPEcreateContextEventCount=12
ProgramCounter=1754 _update_type=2 _current_mask=40000000 tag_status=40000000 main() 1spe=1
{DMA done[tag=30,0x1le] rec:38 0.908us 141.0MB/s}

124 0.908us SPE 0503 SPE_MUTEX_LOCK EventID=503 Processor=3 PhysicalID=0 EventCount=4
SPEcontext=100202C8 StartTime=7D EndTime=87 PPEcreateContextEventCount=12 ProgramCounter=65C
1ock=10012580 miss=0 main() 1spe=1 Tock:mylock

196 0.698us SPE 0703 SPE_MUTEX_UNLOCK EventID=703 Processor=3 PhysicalID=0 EventCount=9
SPEcontext=100202C8 StartTime=BE EndTime=CF PPEcreateContextEventCount=12 ProgramCounter=880
1ock=10012580 main() 1spe=1 lock:mylock rec:40 hold=5.0us

See the PDTR man page for additional output examples and usage details.

The following example shows a lock report summary. This report shows summary
information for a single lock, shr_lock at address 0x10012180. It shows the total
number of accesses to that lock, the hit and miss counts and ratio, and the
minimum, average and maximum hold (after the lock is acquired) and wait
(waiting on a miss) times. Following this line are the individual callers of the lock
(procedure name, address, and logical SPE (Ispe if from SPE code) and the
associated hit, miss, hold, and wait times per caller. The asterisk (*) character
indicates each lock that was not explicitly initialized with a mutex_init() call.

Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT) 17

Accesses
Acount %Total

Hits Misses Hit hold time (uS) Miss wait time (uS)

Count %Acount Count %Acount min, avg, max min, avg, max Name
3 (0.5) 597 (99.5) 100.8, 184.6, 402.4 13.3, 264.4, 568.0 shr_lock (0x10012180)
2 (66.7) 298 (49.9) 100.8, 101.1, 101.5 181.8, 249.7, 383.6 main (0x68c) (1spe=1)
1(33.3) 199 (33.3) 200.7, 201.3, 202.5 13.3, 315.2, 568.0 main (0x68c) (1spe=2)
0 (0.0) 100 (16.8) 0.0, 0.0, 0.0 205.0, 206.8, 278.5 main (0x68c)(1spe=3)
cks (used before/without mutex_init)

If SPE profiling events are enabled in the PDT configuration file, these profile
events are summarized as follows:

Profile:

Total SPE profile samples: 426
Tspe:1 context:01015D698
/home/user/pep/pt3/gtstl/spu:0
231 (54.2%) 00668-0068B procA
110 (25.8%) 00690-006B3 procB
57 (13.4%) 006B8-006DB procC
28 (6.6%) 006E0-00703 procD

The preceding summary shows that of the 426 total sample events, 231 (spe
decrementer based) sample events (54.2% of the total) occurred in procA, 110
(25.8% of the total) occurred in procB, etc.

18 Cell/B.E.Performance Tools Reference

Chapter 2. Feedback Directed Program Restructuring

(FDPR-Pro)

This section describes FDPR-Pro. It covers the following topics:

+ [“Input files” on page 20|

+ [“Instrumentation and profiling” on page 20|

* |“Optimizations” on page 20|

+ [“Profiling SPE executable files” on page 21|

s [“Processing PPE/SPE executable files” on page 21|

+ [“Human-readable output” on page 22|

¢ [“Running fdprpro from the IDE” on page 23|

* [“Cross-development with FDPR-Pro” on page 23|

Introduction

™

The Post-link Optimization for Linux on POWER " tool (FDPR-Pro or fdprpro) is a
performance tuning utility that reduces the execution time and the real memory
utilization of user space application programs. It optimizes the executable image of
a program by collecting information on the behavior of the program under a
workload. It then creates a new version of that program optimized for that
workload. The new program typically runs faster and uses less real memory than
the original program.

The fdprpro tool applies advanced optimization techniques to a program. Some
aggressive optimizations might produce programs that do not behave as expected.
You should test the resulting optimized program with the same test suite used to
test the original program. You cannot re-optimize an optimized program by
passing it as input to fdprpro.

The post-link optimizer builds an optimized executable program in three distinct
phases:

1. Instrumentation phase

The optimizer creates an instrumented executable program and an empty

template profile file. Type the command fdprpro and specify the

instrumentation action as follows:

fdprpro -a instr myprog

The instrumentation phase creates an instrumented file and a profile file. The

default filename suffix appended to the instrumented file is .instr and the

default filename suffix appended to the profile file is .nprof. Therefore, the

preceding command would generate the files myprog.instr and myprog.nprof.
2. Training phase

The instrumented program is executed with a representative workload and as it
runs it updates the profile file.

3. Optimization phase

The optimizer generates the optimized executable program file. You can control
the behavior of the optimizer with options specified on the command line. Type

© Copyright IBM Corp. 2007, 2008 19

the command fdprpro and specify the optimization action, the (same) input
program, the profile file, and the desired optimization flags. The following is an
example.

$ fdprpro -a opt -f myprog.nprof [<opts> ...] myprog

The default suffix for the output file name is . fdpr. The preceding command
creates an optimized file named myprog.fdpr.

An instrumented executable, created in the instrumentation phase and run in the
training phase, typically runs several times slower than the original program. This
slowdown is caused by the increased execution time required by the
instrumentation. Select a lighter workload to reduce training time to a reasonable
value, while still fully exercising the desired code areas.

Input files

The input to the fdprpro command must be an executable or a shared library (for
PPE files) produced by the Linux linker. fdprpro supports 32-bit or 64-bit programs
compiled by the GCC or XLC compilers.

Build the executable program with relocation information. To do this, call the
linker with the --emit-relocs (or -q) option. Alternatively, pass the
-W1,--emit-relocs (or -W1,-q) options to the GCC or XLC compiler.

The SDK helps you build sample programs using a make script named make.footer.
It compiles and links both the PPE and SPE parts of a program, and includes a
predefined set of compiler and linker options. Typically, a user has a simple
Makefile that begins with include $(CELL_TOP) /buildutils/make.footer. To
preserve relocation information, add the following lines to the Makefile before the
include $(CELL_TOP)/buildutils/make.footer line:

LDFLAGS xTc += -W1,-q
LDFLAGS _gcc += -W1,-q

Alternatively, edit the make.footer file are add "-W1,-q" to the definition of
LDFLAGS

Instrumentation and profiling

The fdprpro command creates an instrumented file and a profile file. The profile
file is populated with profile information while the instrumented program runs
with a specified workload.

The instrumented program requires a shared library named 1ibfsprinst32.so for
ELF32 programs, or 1ibfdprinst64.so for ELF64 programs. These libraries are
placed in the library search path directory during installation.

The default directory for the profile file is the directory containing the
instrumented program. To specify a different directory, set the environment
variable FDPR_PROF_DIR to the directory containing the profile file.

Optimizations
If you invoke fdprpro with the basic optimization flag -0, it performs code

reordering optimization as well as optimization of branch prediction, branch
folding, code alignment and removal of redundant NOOP instructions.

To specify higher levels of optimizations, pass one of the flags -02, -03, or -04 to
the optimizer. Higher optimization levels perform more aggressive function

20 Cell/B.E.Performance Tools Reference

inlining, DFA (data flow analysis) optimizations, data reordering, and code
restructuring such as loop unrolling. These high level optimization flags work well
for most applications. You can achieve optimal performance by selecting and
testing specific optimizations for your program.

Instrumentation and optimization options

The fdprpro command accepts many options to control optimization. In our tests,
the -03 option consistently gave good performance results. For complete details,
see the fdprpro man page.

Profiling SPE executable files
About this task

When the optimizer processes PPE executables, it generates a profile file and an
instrumented file. The profile file is filled with counts while the instrumented file
runs. In contrast, when the optimizer processes SPE executables, the profile is
generated when the instrumented executable runs. Running a PPE/SPE
instrumented executable typically generates a number of profiles, one for each SPE
image whose thread is executed. This type of profile accumulates the counts of all
threads which execute the corresponding image. The SPE instrumented executable
generates an SPE profile named <spename>.mprof in the output directory, where
<spename> represents the name of the SPE thread. For more information, see
[“Processing PPE/SPE executable files.”|

If an old profile exists before instrumentation starts, fdprpro accumulates new data
into it. In this way you can combine the profiles of multiple workloads. If you do
not want to combine profiles, remove the old profile before starting the optimizer.

The instrumented file is 5% to 20% larger than the original file. Because of the
limited local store size of the Cell/B.E. architecture, instrumentation might cause
SPE memory overflow. If this happens, fdprpro issues an error message and exits.
To avoid this problem, the user can use the --ignore-function-list file or -ifl
file option. The file referenced by the file parameter contains names of the
functions that should not be instrumented and optimized. This results in a reduced
instrumented file size. Specify the same -if1 option in both the instrumentation
and optimization phases.

Note: The fdprpro command uses lock files named /tmp/fdpr_xflckxxxx to
synchronize multiple SPE threads updating a common profile file. A lock file is
created and removed one or more times during an instrumented run. In rare cases,
the file might still exist after instrumentation. It is advisable to remove the lock
files periodically.

Processing PPE/SPE executable files

By default, fdprpro processes the executable file as a PPE executable or as an SPE
executable, depending on its intended target (the intended target is specified inside
the executable file). Two modes are available in order to fully process the PPE/SPE
hybrid file: integrated mode, and standalone mode.

Integrated mode
About this task

The integrated mode of operation does not display the details of SPE processing.
This interface is convenient for performing full PPE/SPE processing, but flexibility

Chapter 2. Feedback Directed Program Restructuring (FDPR-Pro) 21

is reduced. To completely process a PPE/SPE file, run the fdprpro command with
the -cell (or --cell-supervisor) command-line option. The following is an
example.

$ fdprpro -cell -a instr myprog -o myprog.instr

To optimize the program myprog, type the following command.
$ fdprpro -cell -a opt[<opts> ...] myprog -f myprog.nprof -o myprog.fdpr

The option -spedir specifies the directory into which SPE files are extracted, where
they are processed, and from where they are encapsulated back into the PPE file. If
this option is not specified, a temporary directory is created in the /tmp directory
and is deleted if fdprpro exits without error.

Standalone mode
About this task

In integrated mode, the same optimization options are used when processing the
PPE file and when processing each of the SPE files. Full flexibility is available in
standalone mode, where you can specify the explicit commands needed to extract
the SPE files, process them, and then encapsulate and process the PPE file. The
following list shows the details of this mode.

e Extraction

SPE images are extracted from the input program and written as executable files
in the specified directory. The following is an example.

$ fdprpro -a extract -spedir mydir myprog

* SPE processing
The SPE images are processed one by one. You should place all of the output
files into a distinct directory by their original name. The following is an
example.

$ fdprpro -a <action> mydir/<spel> [-f <profl>] [<opts> ...] -0 outdir/<spel>
$ fdprpro -a <action> mydir/<spe2> [-f <prof2>] [<opts> ...] -0 outdir/<spe2>

Select either instr or opt for action. Specify the profile file with the -f
command line option. If you do not specify this option, the program searches for
a default profile file named mydir/<spename>.mprof in the current directory.

Note: The FDPR_PROF_DIR environment variable cannot be used for overriding
the SPE profile directory. For more information, see [“Instrumentation and|
[profiling” on page 20|

* Encapsulation and PPE processing

The SPE files are encapsulated as a part of the PPE processing. The following is
an example. The -spedir option specifies the output SPE directory.

$ fdprpro -a <action> --encapsulate -spedir outdir [<opts> ...] myprog

Human-readable output

In addition to creating an optimized or instrumented program, fdprpro produces

human-readable output. The following list details the possible output streams of

fdprpro.

 Standard output. The output contains the sign-on message, progress information
and the sign-off message. Progress information displays the passage of fdprpro
through different phases of processing. The following is an example.

22 Cell/B.E.Performance Tools Reference

FDPR-Pro 5.4.0.10 for Linux (CELL)

fdprpro -a opt -03 Ti.linux.gcc32.base -o 1l.base
> reading_exe ...

> adjusting_exe ...

> analyzing ...

> building_program_infrastructure ...

> updating_executable ...
> writing_executable ...
bye.

Specify the --quiet option to suppress this output.

 Standard error. Warnings and errors messages are written to the standard error
stream. fdprpro exits after the first error.

e Statistics file. If you specify the --verbose <level> option, fdprpro writes
various statistics to a file. The default file name for the statistics file is
<output_file>.stat. This file contains a list of tables in the form of <attribute>
<value> pairs, one per line. You can control the output detail level by specifying
the level parameter. The following is an excerpt from the statistics file
corresponding to the above example.
options.group active_options
options.optimization -bf -bp -dp -hr -hrf 0.10 -kr -Tas -Tro

-lu 9 -isf 12 -nop -pr -RC -RD -rt 0.00
-si -tlo -vro

options.output -0 l.base
global.use_try_and_catch: 0
global.profile info: not_available
file.input: 1i.Tinux.gcc32.bhase
file.output: 1.base
file.statistics: 1.base.stat
analysis.csects: 347
analysis.functions: 343
analysis.constants: 13
analysis.basic_bTocks: 5360
analysis.function_descriptors: 0
analysis.branch_tables: 10
analysis.branch_table_entries: 374
analysis.unknown_basic_units: 17
analysis.traceback_tables: 0

The options specified in the optimization group are those enabled by the -03
option.

Running fdprpro from the IDE

You can invoke fdprpro using the GUI of the Eclipse-based Cell/B.E. IDE. A
special plugin is integrated to the IDE to enable this feature. See the IDE
documentation for more detailed information.

Cross-development with FDPR-Pro
About this task

FDPR-Pro can be used also in cross-development environment available on Linux
X86 systems. The same three-phase profile-driven optimization process is used:
instrumentation, profile collection (training), and optimization. In addition, the
fdprpro commands used during instrumentation and optimization are identical.
The difference is in how profile is collected.

Chapter 2. Feedback Directed Program Restructuring (FDPR-Pro) 23

Profile collection in native development is achieved by running the instrumented
file locally on the host and using the created profile when performing the
optimization phase. However, the instrumented file (like the optimized file) can
only be executed on a Cell BE-based system. Perform the following steps to collect
the profile in a cross-development environment:

1. Pass the instrumented file, with its empty PPE profile (typically with an .nprof
extension), and any input files needed for its execution, to a native Cell BE
environment (or to the Cell BE full-system simulator). Verify that the native
environment includes the shared libraries required for instrumentation:
Jusr/1ib/1ibfdprinst32.so and /usr/1ib64/1ibfdprinst64.so.

2. Execute the instrumented file with its workload. This fills the PPE profile and
creates the SPE profile (with the .mprof extension).

3. Pass the generated profiles back to the cross-development environment where
they will be used in the optimization phase.

24 Cell/B.E.Performance Tools Reference

Chapter 3. OProfile

OProfile is a tool for profiling user and kernel level code. It uses the hardware
performance counters to sample the program counter every N events. You specify
the value of N as part of the event specification. The system enforces a minimum
value on N to ensure the system does not get completely swamped trying to
capture a profile.

Make sure you select a large enough value of N to ensure the overhead of
collecting the profile is not excessively high.

The opreport tool produces the output report. Reports can be generated based on
the file names that correspond to the samples, symbol names or annotated source
code listings.

How to use OProfile and the postprocessing tool is described in the user manual
available at:

|http://oprofile.sourceforge.net/doc/|

The current Software Development Kit for Multicore Acceleration version of
OProfile for Cell BE supports profiling on the POWER processor events and SPU
cycle profiling. These events include cycles as well as the various processor, cache
and memory events. It is possible to profile on up to four events simultaneously
on the Cell BE system. There are restrictions on which of the PPU events can be
measured simultaneously. When using PPU profiling, events must be within the
same group due to restrictions in the underlying hardware support for the
performance counters. You can use the opcontrol —Tist-events command to view
the events and which group contains each event.

There is one set of performance counters for each node that are shared between the
two CPUs on the node. For a given profile period, only half of the time is spent
collecting data for the even CPUs and half of the time for the odd CPUs. You may
need to allow more time to collect the profile data across all CPUs.

Note:
1. Before you issue an opcontrol --start, you should issue the following
command:

opcontrol --start-daemon

2. To produce a report with Linux kernel symbol information you should install
the corresponding Kernel debuginfo RPM..

SPU profiling restrictions

When SPU cycle profiling is used, the opcontrol command is configured for
separating the profile based on SPUs and on the library. This corresponds to the
you specifying —separate=CPU and —separate=1ib. The separate CPU is required
because it is possible to have multiple SPU binary images embedded into the
executable file or into a shared library. So for a given executable, the various SPUs
may be running different SPU images.

With —separate=CPU, the image and corresponding symbols can be displayed for
each SPU. The user can use the opreport -merge command to create a single report

© Copyright IBM Corp. 2007, 2008 25

http://oprofile.sourceforge.net/doc/

for all SPUs that shows the counts for each symbol in the various embedded SPU
binaries. By default, opreport does not display the app name column when it
reports samples for a single application, such as when it profiles a single SPU
application. For opreport to attribute samples to a binary image, the opcontrol
script defaults to using —separate=1ib when profiling SPU applications so that the
image name column is always displayed in the generated reports.

SPU report anomalies

The report file uses the term CPUs when the event is SPU_CYCLES. In this case,
CPUs actually refer to the various SPUs in the system. For all other events, the
CPU term refers to the virtual PPU processors.

With SPU profiling, opreport’s --1ong-filenames option may not print the full path
of the SPU binary image for which samples were collected. Short image names are
used for SPU applications that employ the technique of embedding SPU images in
another file (executable or shared library). The embedded SPU ELF data contains
only the filename and no path information to the SPU binary file being embedded
because this file may not exist or be accessible at runtime. You must have sufficient
knowledge of the application’s build process to be able to correlate the SPU binary
image names found in the report to the application’s source files.

Tip

Compile the application with -g and generate the OProfile report with -g to
facilitate finding the right source file(s) to focus on.

Generally, when the report contains information about a single application,
opreport does not include the report column for the application name. It is
assumed that the performance analyst knows the name of the application being
profiled.

26 Cell/B.E.Performance Tools Reference

Chapter 4. Cell-perf-counter tool

The cell-perf-counter (cpc) tool is used for setting up and using the hardware
performance counters in the Cell/B.E. processor. These counters allow you to see
how many times certain hardware events are occurring, which is useful if you are
analyzing the performance of software running on a Cell Broadband Engine
Architecture system. Hardware events are available from all of the logical units
within the Cell/B.E. processor, including the PPE, SPEs, interface bus, and memory
and I/0O controllers. Four 32-bit counters, which can also be configured as pairs of
16-bit counters, are provided in the Cell/B.E. performance monitoring unit (PMU)
for counting these events.

The cpc tool also makes use of the hardware sampling capabilities of the Cell/B.E.
PMU. This feature allows the hardware to collect very precise counter data at
programmable time intervals. The accumulated data can be used to monitor the
changes in performance of the Cell/B.E. system over longer periods of time.

The cpc tool provides a variety of output formats for the counter data. Simple text
output is shown in the terminal session, HTML output is available for viewing in a
Web browser, and XML output can be generated for use by higher-level analysis
tools such as the Visual Performance Analyzer (VPA).

You can find details in the documentation and manual pages included with the

cellperfctr-tools package, which can found in the /usr/share/doc/cellperfctr-
<version>/ directory after you have installed the package.

© Copyright IBM Corp. 2007, 2008 27

28 Cell/B.E.Performance Tools Reference

Chapter 5. Hybrid performance tools

Overview

An application running in a hybrid environment typically consists of a root
application that runs on the host (for example, an AMD X86_64 processor) and
application fragments that run on one or more accelerators (in this case a Cell/B.E.
processor). The hybrid application itself is launched from the host system and by
default the output from all parts of the application is returned to the host console.

There are a variety of performance and debug tools that either work on the AMD
X86_64 processor, on the Cell/B.E., or on both. To use these tools on a hybrid
application, follow this procedure:

* Launch a Cell/B.E. performance tool against an application fragment which runs
on an arbitrary accelerator when the application itself is launched from the host.

¢ Launch a host performance tool and a Cell/B.E. performance tool for a hybrid
application and coordinate the output.

The hybrid performance tooling works with DaCS for Hybrid and is able to solve
these problems for the following tools:

*» CPC

* FDPR-Pro
* QOProfile
 PDT

« PDTR

DaCS for Hybrid provides a mechanism to allow environment variables to be
exported from the host application process to the accelerator application fragment
process. In addition, when you launch a program, you can specify a parent
executable to be specified, which is called to do the final launch of the application
fragment on the accelerator.

With these two capabilities, the hybrid tooling currently consists of Bash scripts.
Typically, there is a script for the host and a script for the accelerator. The host
script sets up the environment, including setting up environment variables to pass
along to the accelerator process, and launches the root application. It also can
coordinate the launch of the host based performance tools.

Anytime that DaCS for Hybrid needs to start an application fragment on an
accelerator, it instead starts the corresponding accelerator script. This script does
any required setup needed by the performance tool, launches the application, and
does any required post processing when the application is finished.

Requirements

Your system must meet the following requirements to run the Cell/B.E.
performance tools.

© Copyright IBM Corp. 2007, 2008 29

SSH usage

Some of the tools make use of SSH (Secure SHell) to launch applications on the
accelerator. Ensure that SSH support between the host and the accelerator is
configured so that scripts can ssh from the host to the accelerator without needing
to supply a password.

Hybrid application

The scripts are designed to run against a hybrid application. The scripts depend on
DaCS being used in the application to launch an application fragment on the
accelerator.

Hybrid tools RPMs

There are two RPMs associated with the hybrid tools:
* One for the X86_64 host system
* One for the PPC64 accelerator system

The base RPM name is cell-perf-hybrid-tools.
Supporting performance tools

The cell-perf-hybrid-tools RPMs do not directly require other RPMs, however; the
RPM'’s associated with the base performance tools you want to use must be
installed. For example, if you want to run the script to launch CPC against your
hybrid application, the CPC RPMs must be installed on the Cell/B.E. system(s)
you are using for acceleration. See the IBM Software Development Kit for Multicore
Acceleration Installation Guide for details about how to install the performance tools.

NFS

For tooling data output, create an NFS mount point that can be shared between the
host and accelerator systems . This is mandatory for hybrid systems that do not
have a local hard drive on the accelerator part of the node.

Setting up and configuring the performance tool scripts

This topic describes how to set up and configure the performance tool scripts.
By default the hybrid performance tooling scripts are installed in /usr/bin.

The hybrid performance tools use common setup scripts to set up environment
information for the tools and applications.

The perfToolHostSetup script is sourced in the host portion of the tooling scripts.
Within this script the perfToolUsrEnv script is sourced. This script is generally
where environment settings that you want or need to change can be found. This is
installed as a read-only file. If the defaults do not work for a given user, the user
can copy this file and modify the values of the environment variables.

To make the perfToolHostSetup find your new perfToolUsrEnv, export
PERF_TOOLS_USR_ENV. The environment variable should reference the full path
and file name of the new perfToolUsrEnv. Type for example:

$ export PERF_TOOLS_USR_ENV=/home/johndoe/bin/myPerfToolUsrEnv

30 Cell/B.E.Performance Tools Reference

The current user environment variables are as follows:

* SDK_ROOT - points to the SDK install location. Only set this variable if the SDK
is installed to other than the default location.

e PERF_DATA_ROQOT - this is the base location for all the tool output. This needs
to be the same on both the host and the accelerator. This is usually an NFS
mounted file system. All output directories created by the tools have this as a
base directory.

The default location is: /$SCRATCH/perfData

Where $SCRATCH points to a common NFS mount point which is shared between
host and accelerator to output data.

The following four optional environment variables allow you to identify the
location of the host and accelerator pieces of your hybrid application so they can
be added to the appropriate path.

These also allow you to point to alternative versions of your executable which you
are using to work with the tools (for example, if you have compiled a version of
your application with trace-enabled, when you run the trace launching tool you
want to make sure the traced version of your executable is placed at the front of
various paths).

HOST_APP_PATH Path where the host application executable is located.

HOST_APP_LD_LIBRARY_PATH Path for host application dependent shared libraries.

ACCEL_APP_PATH Path where the accelerator application executable is
located.

ACCEL_APP_LD_LIBRARY_PATH |Path for accelerator application dependent shared
libraries.

General output directory

The top part of the directory structure which is common to all the tools is as
follows:

$PERF_DATA_R0OOT/userid/hostname

where:
* userid is the userid of the person running the host script command

* hostname is the hostname of the machine where the host script command was
launched

The rest of the directory structure is unique for each tool.

Hybrid tools description

How to run each performance tool against a sample hybrid application.
Using the DaCS for Hybrid-x86 sample

Note: For each tool a walk-thru is provided, which shows you how to run the tool
against a sample hybrid application. To run the sample application you must

Chapter 5. Hybrid performance tools 31

install the dacs-hybrid-examples-source-*.*.-* RPM on the host system. Follow
the directions in the README and be able to run the sample_dacs_hybrid_1t_he
application.

The sample comes with a bash script, ../dacs-hybrid-examples/dacs_hello/
hybrid/bin/runsample.sh, which sets some environment variables and launches
the sample_dacs_hybrid_1t_he program. You can use this script to run the sample
directly. The hybrid performance tools MUST run against the host executable
directly otherwise they do not function so do NOT use runsample.sh with the
performance tools.

The simplest way to work around this problem is to export the following
environment variable prior to running any of the performance tools against the
sample. Make sure you export from the directory where the
sample_dacs_hybrid_1t_he is located.

export ACCEL_PROG_PATH="pwd™/accel

CPC hybrid support

The hybrid performance tools package includes the scripts cpch and cpca to assist
in using CPC in a hybrid environment.

A hybrid program can be monitored using the cpch script. The cpca script is used
internally by cpch and is not intended to be used by a user directly.

CPC usage

cpch [options] <application name> [<application parameters>]

Options:

--runid=ID Optional. Name of the current run. If no
runid is provided a timestamp is used.

--cell-event=EVT Required. Can be specified multiple times
depending on the capabilities of the
Cell/B.E. PMU and OProfile. The event(s) to
be monitored on the Cell/B.E. part of the
application is (are) specified. For example:

--cell-event=C

--cell-options=0PTS Optional. Specifies any parameters for the
CPC command. Multiple parameter values
can be specified by enclosing them in
quotes.

--html Create HTML output.

--xml Create XML output.

--help,-h Print help information for this command.

--listenv,-1 Prints out trace environment variable
information.

Example:

cpch --cell-event=C --cell-options="-i 32000000" my_application -xyz

32 Cell/B.E.Performance Tools Reference

CPC tool results

* Any application output from either the host or the accelerator parts of the
application is normally routed back to the host console window. Any output
generated by the CPC hybrid scripts is also displayed in the host console
window.

* CPC output: The output from the CPC tool is in the following directory:
<PERF_DATA_RO0T>/<username>/<hostname>/cpc/<runid>/cbe/<acceleratorhostname>

where:

PERF_DATA_ROOT
is the environment variable set in the perfToolUsrEnv configuration file
ﬁe [“Setting up and configuring the performance tool scripts” on page|
30)

username
is the userid that called the cpch script

hostname
is the host system’s name

runid is either the runid supplied on the cpch invocation, or at date-timestamp
taken at the time cpch is called

accelerator hostname
is the hostname for the accelerator where cpc is running.
The basic output is in a file named cpc.out.

If XML or HTML output is requested when you invoke cpch, cpc.html, or
cpc.xml, or both is also in this directory.

CPC example

Take the sample hybrid application sample_dacs_hybrid_1t and run CPC against it.

1. Make sure that you can run the sample_dacs_hybrid_1t application. To do this,
change to the */dacs-hybrid-examples/dacs_hello/bin directory and type:

./runsample.sh

Note: If you have previously exported DACS_START_ENV_LIST make sure
you reset it before you run ./runsample.sh:

export DACS_START_ENV_LIST=

The hybrid sample is now running.

2. Run the cpc tool against the Cell/B.E. part of the application. Export the
following variable:
export ACCEL_PROG_PATH="pwd™/accel
Jusr/bin/cpch --runid=hybridSample_runl --cell-event=C ./sample_dacs_hybrid_1t_he
Given the following:

PERF_DATA ROOT = /myData

Userid = johndoe

Host System Name = myHost

Accelerator System Name = myAcceleratorName

The file output by cpch is in the following directory:
/myData/perfData/johndoe/myHost/cpc/hybridSample _runl/cbe/myAcceleratorName

Chapter 5. Hybrid performance tools 33

FDPR-Pro hybrid support

The hybrid performance tools include the scripts fdprproh and fdprproa to assist
in using FDPR-Pro in a hybrid environment.

Use the fdprproh script to analyze and optimize a hybrid program. The fdprproa
script is used internally by fdprproh and is not intended to be used by a user
directly.

Note: The hybrid script, fdprproh, supports coordinating fdrprpro usage on the
Cell/B.E. accelerator ().

FDPR-Pro usage
fdprproh [OPTION] ... <application name> [<application parameters>]

Note: If application arguments contain switches (for example -p), all the
arguments must be placed in double quotes.

Options:

-1, --listenv List the environment variables for the script
processing.

-h, --help Print help information for this command.

-0, --optimization-options "<fdprpro Enclose the optimization options in double

optimization options>" quotes.

Example:

fdprproh --optimization-options "-03" /myAppPath/myApp appArguments

Note: If fdprpro fails, the output directory contains files that can contain
additional information, which can help you to determine the cause of the failure.
For example, a log file is created, which logs every phase of the tool when it is
running; instrumentation, executing the instrumented code, and optimizing the
code.

FDPR-Pro tool results

* Any application output from either the host or the accelerator parts of the
application is normally routed back to the host console window. Any output
generated by the fdprpro hybrid scripts is also displayed in the host console
window.

¢ FDPR-Pro output:
All output from the three stages of the fdprpro tool is in the following directory:
$PERF_DATA_ROOT/<userid>/<hostname>/fdprpro/<application name>/

The final optimized version of the original executable file is named:
<applicationName>.opt

FDPR-Pro example

This example takes the sample hybrid application sample_dacs_hybrid_1t and runs
a basic fdprproh run against it.

1. Make sure that you can run the sample_dacs_hybrid_1t application. To do this,
change to the */dacs-hybrid-examples/dacs_hello/bin directory and type:

34 Cell/B.E.Performance Tools Reference

./runsample.sh

Note: If you have previously exported DACS_START_ENV_LIST, make sure
you reset it before you type ./runsample.sh:

export DACS_START_ENV_LIST=

The sample provides instructions about how to build and run it.

Now that the hybrid sample is running, run the fdprpro tool against the
Cell/B.E. part of the application.

2. Modify the Makefiles:fdprpro requires its executables to be built with
relocation information. To do this, make the following modifications to the
sample’s Makefiles:

a. In file: x/dacs-hybrid-examples/dacs_hello/hybrid/ppu64/Makefile on the
LDFLAGS line, insert "-W1,-q" after "+=" (do not add any spaces).

b. To rebuild the files, type the following from the combined directory:

make clean
make

3. Run:
cd bin

Export the following variable:
export ACCEL_PROG_PATH="pwd™/accel

/usr/bin/fdprproh —o "-02" ./sample_dacs_hybrid_1t_he

Given the following:

PERF_DATA_ROOT = /myData
Userid = johndoe
Host System Name = myHost
PPC Executable Name = myPPCExecName
SPE Executable Name = mySPEExecName

The output files from the fdprproh run are saved in the following directory:
/myData/perfData/johndoe/myHost/fdprpro/myPPCExecName

If the run is successful, the following files are in the directory:

myPPCExecName.instr The instrumented executable.

myPPCExecName.instr.log fdprpro console output from the
instrumentation step.

myPPCExecName.instr.out Console output from running
myPPCExecName.instr.

myPPCExecName.nprof Tool output file for the PPC executable.

mySPEExecName.mprof Tool output file for the SPE executable.

myPPCExecName. 1og fdprpro console output from the
optimization step.

spe_dir SPE temporary directory. Empty unless there
was a failure concerning the SPE part of the
run.

myPPCExecName.opt The optimized PPC with the embedded SPE

executable file.

Chapter 5. Hybrid performance tools 35

OProfile hybrid support

OProfile is available for hybrid. You can download it from:

[http://oprofile.sourceforge.net/|

Root access

Because the OProfile tool accesses hardware registers, it requires that the userid
running this tool either has root authority or sudo authority to run OProfile. For
more information about which events can be monitored for each type of CPU, the
event names, and other command line options, refer to the OProfile documentation
at:

|http://oprofile.sourceforge.net/|

OProfile usage

The Hybrid Tools includes the scripts oprofileh, oprofilea, and oprofilerpt to
assist in using OProfile in a hybrid environment. A hybrid program can be profiled
using the oprofileh script. The oprofilerpt script can be used at a later time to
create a report from the profile data. The oprofilea script is used internally by
oprofileh and is not intended to be called by a user directly. OProfile can be run
on the host part of the application and/or the Cell/B.E. part of the application.

oprofileh usage:
oprofileh [options] <application name> [<application parameters>]

Note: If you want to pass parameters to your application you need to add a blank
parameter (--) between the last oprofileh parameter and the program name, for
example:

oprofileh --host-vm=--no-vmlinux --host-event=CPU_CLK_UNHALTED:1000000 -- myApp myAppParm

Parameters for oprofileh

--runid=ID Optional. Name of the current run to refer to
the data using the oprofilerpt command at a
later time. If no runid is provided a
timestamp is used.

--host-vm=VM Optional: (--no-vmlinux,--vmlinux=,...)

Common OProfile parameters that are
provided before starting OProfile. These
option are used on the host OProfile.
Multiple parameter values may be specified
by enclosing in quotes.

--cell-vm=VM Optional: (--no-vmlinux,--vmlinux=,...)

Common OProfile parameters that are
provided prior to starting OProfile. These
option are used on the Cell/B.E. OProfile.
Multiple parameter values can be specified
by enclosing in quotes.

36 Cell/B.E.Performance Tools Reference

http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/

--host-event=EVT

Optional. Can be specified multiple times
depending on the capabilities of the host
system’s PMU and OProfile.

The events to be monitored on the host part
of the program are specified. For example:

--host-event= CPU_CLK_UNHALTED:500000

--cell-event=EVT

Optional. Can be specified multiple times
depending on the capabilities of the
Cell/B.E. PMU and OProfile. The event to
be monitored on the Cell/B.E. part of the
program are specified. For example:

--host-event=SPU_CYCLES:500000

--host-options=0PTS

Optional. Can specify any parameters for the
OProfile host opcontrol --start command.
Multiple parameter values can be specified
by enclosing in quotes.

--cell-options=0PTS

Optional. Can specify any parameters for the
OProfile Cell/B.E. opcontrol --start
command. Multiple parameter values can be
specified by enclosing in quotes.

--help,-h

Prints help information for this command.

--listenv,-1

Prints out trace variable information.

Example for oprofileh:

oprofileh --runid=Run7 --cell-vm=--no-vmlinux
--cell-event=SPU_CYCLES:200000 my_application -1x

The oprofilerpt command is used after oprofileh to create the desired reports. It
references the data using the required parameter runid. Reports are stored in the
performance tools directory structure. The script prints the directory name where
the reports are found as it runs the report commands.

oprofilerpt usage:

oprofilerpt --runid=<id> [options] opreport|opannotate|opgprof

Parameters for oprofilerpt:

--runid=ID Name of the run that was specified or
created when oprofileh was previously used
to profile a program.

--host Optional. Create a report on the host
OProfile data.

--cell Optional,. Create report(s) on the Cell/B.E.

OProfile data.

--host-options=0PT

Optional. Specify any parameters for the
host opreport/opannotate/opgprof
command.

--cell-options=0PT

Optional. Specify any parameters for the
Cell/B.E. opreport/opannotate/opgprof
command. Multiple parameter values can be
specified by enclosing in quotes.

Chapter 5. Hybrid performance tools 37

--delete,-d Delete the OProfile session data (saved
under runid) after the report has been

created.
--print,-p Print a copy of the OProfile report.
--help,-h Prints help information for this command.

Example for oprofilerpt:

oprofilerpt --runid=Run7 --cell --cell-options=--symbols
--print opreport

OProfile tool results

* Any application output from either the host or the accelerator parts of the
application is normally routed back to the host console window. Any output
generated by the Oprofile hybrid scripts is also displayed in the host console
window.

* OProfile output: the output from the OProfile tool is in the following directory:
<PERF_DATA_ROOT>/<username>/<hostname>/oprofile/<runid>/<arch>/<accelerator hostname>

where:

PERF_DATA_ROOT
Is the environment variable set in perfloolUsrEnv configuration file (see
[“Setting up and configuring the performance tool scripts” on page 30).

username
Is the userid that called the oprofileh script

hostname
Is the host system’s name

runid Is either the runid supplied on the oprofileh invocation, or a
date-timestamp taken at the time cpch was called.

arch s the hardware architecture (either x86_64 or cbe)

accelerator hostname
Is the hostname for the accelerator where OProfile is running.

After oprofileh has run, oprofilerpt should be run to generate a report which is
placed in the same directory.

Note: if you run oprofileh against both the host and the accelerator at the same
time you get multiple <arch> directories.

OProfile example

Take the sample hybrid application sample_dacs_hybrid_It and run OProfile
against both the host and accelerator executables.

1. Make sure that you can run the sample_dacs_hybrid_1t application. To do this,
change to the */dacs-hybrid-examples/dacs_hello/hybrid /bin directory and

type:

./runsample.sh

Note: If you have previously exported DACS_START_ENV_LIST, reset it before
typing ./runsample.sh:

export DACS_START_ENV_LIST=

38 Cell/B.E.Performance Tools Reference

The sample comes with instructions about how to build and run it.

Now that you have the hybrid sample running, run the oprofileh tool against
the application.

2. Export the following variable:
export ACCEL_PROG_PATH="pwd"/accel

/usr/bin/oprofileh
--runid=hybridSample_runl
--host-vm=--no-vmlinux
--host-event=CPU_CLK_UNHALTED:1000000
--cell-vm=--no-vmlinux
-—cell-event=CYCLES:1000000 ./sample_dacs_hybrid_1t_he

Given the following:

PERF_DATA_ROOT = /myData
Userid = johndoe
Host System Name = myHost
Accelerator System Name = myAcceleratorName

3. The output files from the oprofileh run are in the following directory:

/myData/perfData/johndoe/myHost/oprofile/hybridSample_runl/cbe/myAcceleratorName
/myData/perfData/johndoe/myHost/oprofile/hybridSample_runl/x86_64/myAcceleratorName

4. Run the OProfile report tool against the output:

/usr/bin/oprofilerpt --runid=hybridSample_runl
--cell --cell-options=--symbols —d --print opreport

After running the oprofilerpt command each of the output directories contains

the file opreport.out, one in the x86_64 directory and one in the cbe directory. This
contains the reports from the OProfile runs.

PDT support for hybrid

For general information about how to use and configure PDT, see |[Chapter 1, “Cell|
[Broadband Engine Performance Debugeging Tool (PDT),” on page 1/

The scripts provided here in the hybrid tooling RPMs enable easy setup,
coordination, and use of the trace facility in the hybrid environment.

These scripts assume you have enabled your application for trace (see the PDT
documentation for details). The scripts also allow for transparent switching of the
LD_LIBRARY_PATH to include the traced versions of the IBM provided shared
libraries. This is useful if you are using the shared library versions of these
libraries. If you are statically linking in libraries that are trace enabled you need to
modify your make files accordingly (see the PDT documentation).

Environment variables are also provided so that the user can point to traced
versions of users’ shared libraries and have them substituted when tracing the

application (see the user environment variable descriptions above for
ACCEL_APP_PATH and ACCEL_APP_LD_LIBRARY_PATH).

PDT usage

traceh [OPTION] ... <application name> [<application arguments>]

Note: If application arguments contain switches (for example, -p or --myOpt), all
the arguments must be placed in double quotes.

Chapter 5. Hybrid performance tools 39

Options:

-h, --help Print command help.

-1, --listenv Prints out trace environment variable
information.

--runid Specifies a prefix to prepend to the base

trace directory associated with the trace of
this application. Default is a date/time
based directory name.

Note: This is used to coordinate PDTR
analysis.

Example:
traceh --runid myFastRun2 myHybridApp argument

Setting up PDT

PDT exists on both the host and the accelerator. It supports the ability to trace
shipped libraries that have been enabled for trace. It also supports the ability for
the user to add trace points to their code (see the PDT users guide for details).

Both PDT on the host as well as PDT on the accelerator require a configuration file
to tell them which trace functions you want turned on for the run of your
application. Use the following export statements from the host environment to
point to the appropriate configuration files:

Host PDT configuration file example:
export PDT_CONFIG_FILE=/usr/share/pdt/config/pdt_dacs_config_hybrid.xml

Accelerator PDT configuration file example:
export DACS_START_ENV_LIST=
"PDT_CONFIG_FILE=/usr/share/pdt/config/pdt_dacs_config_cell.xml"

Note: The example shows an export statement split onto two lines because of the
width of the printed page. The export statement is normally one continuous line.

Note: The example listed enables default tracing of all the DaCS code.

PDT tool results

* Any application output from either the host or the accelerator parts of the
application is normally routed back to the host console window. Any output
generated by the trace hybrid scripts are also displayed in the host console
window.

* Trace/PDT Output: The output from the PDT tool is in the following directories:
<PERF_DATA_ROOT>/<username>/<hostname>/trace/<runid>

where:

PERF_DATA_ROOT
Is the environment variable set in perfToolUsrEnv configuration file (see
[‘Setting up and configuring the performance tool scripts” on page 30).

username
Is the userid that called the traceh script.

hostname
Is the host system’s name.

40 Cell/B.E.Performance Tools Reference

runid Is either the runid supplied on the traceh invocation, or at date-timestamp
<YYYYmmddHHMMSS> taken at the time traceh was called.

Individual files generated by PDT also have the source hostname prepended to the
front so that point of origin can be determined.

After traceh is run, pdtrh can be run to analyze the trace or print a readable text
file output. VPA can also be used to visualize the results.

PDT Trace example

Take the sample hybrid application sample_dacs_hybrid_1t and run traceh against
both the host and accelerator executables.

Required RPMs for Trace/PDT to function for DaCS:

Platform Required RPMs

Hybrid-x86 pdt-**.-*

pdt-devel-*.*.-*
pdt-cross-devel-*
pdt-cross-devel-*.*.-*
pdtr-*.*.-*

trace-*.*.-*

trace-devel-*.*.-*
trace-cross-devel-*.*.-*
dacs-hybrid-trace-*.*.-*
dacs-hybrid-trace-devel-*.*.-*

Cell/B.E. pdt-*.*.-*

pdtr-*.%.-*

trace-*.*.-*
dacs-trace-*.*.-*
dacs-hybrid-trace-*.*.-*

1. Make sure that you can run the sample_dacs_hybrid_lt application by
navigating to the */dacs-hybrid-examples/dacs_hello/hybrid /bin directory and
invoking:

./runsample.sh

Note: If you have previously exported DACS_START_ENV_LIST make sure
you reset it before typing ./runsample.sh as follows:

export DACS START ENV_LIST=
./runsample.sh

If it does not run, refer to the sample documentation on how to build and run
it.

2. Export the following two variables:
export ACCEL_PROG_PATH="pwd™/accel

3. Because DaCS on the host as well as on the PPU ship shared libraries with
tracing enabled, it is a matter of using those libraries instead of the normal
libraries. The traceh and tracea scripts facilitate this by defining TRACE to
enable it. Run the following export:

export TRACE=1
Then navigate to the ../hybrid directory and type:

make clean
make

Chapter 5. Hybrid performance tools 41

4. You have now built the hybrid sample for trace. Next, run the traceh tool
against the application. To do this, you first need to use environment variables
to tell PDT on the host and accelerator where to find the config file you want it
to use. For this example, tell it to use a config file which enables tracing of
DaCSs.

a. For the host:
export PDT_CONFIG_FILE=/usr/share/pdt/config/pdt_dacs_config_hybrid.xml
b. For the accelerator:

export DACS_START_ENV_LIST=
"PDT_CONFIG_FILE=/usr/share/pdt/config/pdt_dacs_config_cell.xml"

Note: The example shows an export statement split onto two lines because
of the width of the printed page. The export statement is normally one
continuous line.

5. Execute a run with tracing:

cd bin
/usr/bin/traceh --runid=hybridSample_trace ./sample_dacs_hybrid 1t he

Given the following;:

PERF_DATA_ROOT = /myData
Userid = johndoe
Host System Name = myHost
Accelerator System Name = myAccelertorName

Then the output files from the traceh run are in the following directory:
/myData/perfData/johndoe/myHost/trace/hybridSample_trace

6. Run the pdtr tool against the output:
/usr/bin/pdtrh --runid=hybridSample_trace

Output from pdtr is in the same directory, and ends with a pep file extension.

PDTR support for Hybrid

PDTR is a command line tool that provides both viewing and postprocessing of
PDT traces on the target machine.

Use of PDTR requires trace output files from PDT. After you have run the PDT
application and it has generated trace output files, use PDTR to show the trace
output and analysis.

For more information about using PDTR see the pdtr manual page or the
Chapter 1, “Cell Broadband Engine Performance Debugging Tool (PDT),” on page|

]

PDTR usage
pdtrh --runid=ID [options]

Required parameters:

--runid=ID Required. Must either match the runID
given to traceh when generating the trace, or
match the default date-timestamp assigned
when traceh was run.

Options:

42 Cell/B.E.Performance Tools Reference

-h,--help

Prints out trace environment variable
information.

-1,--1istenv

Specifies a prefix to be pre-pend to the base
trace directory associated with the trace of
this application. The default is a
date/time-based directory name.

Note: This is used to coordinate PDTR
analysis.

-0, --pdtr-options

Options "<pdtr command line options>"
Note: If more than one option is supplied it
must be enclosed in double quotes.

Example:

If you create the trace with:

traceh --runid myFastRun2 myHybridApp argument

To produce a text-readable basic trace file, run:

pdtrh —runid myFastRun2

PDTR tool results

* Any application output from either the host or the accelerator parts of the
application are normally routed back to the host console window. Any output
generated by the trace hybrid scripts is also displayed in the host console

window.

¢ Trace/PDT output: The output from the pdtrh tool is placed in the same
directory as the source trace files generated by traceh/pdt and has a .pep

extension.

Chapter 5. Hybrid performance tools 43

44 Cell/B.E.Performance Tools Reference

Chapter 6. Performance tools example

The performance tools example is a practical "hands-on” example, which shows
you how to use the performance tools, collect information, and access relevant
visualization features.

FFT16M sample application

The target sample application for analysis is the FFT16M application that can be
found in the Cell BE SDK demos bundle:

/opt/cell/sdk/src/demos/FFT16M

This application, which was hand-tuned, performs a 4-way SIMD single-precision
complex FFT on an array of size 16,777,216 elements. The available command
options are:

fft <ncycles> <printflag> [<log2_spus> <numa_flag> <largepage flag>]

Preparing and building for profiling

You need to set up a "sandbox” styled project tree structure, so that you have more
flexibility when you modify and generate files:

Before you begin

About this task

1. Copy the application from the SDK tree. To work on a "sandbox” tree you need
your own copy of the project in an accessible location (for example your home
directory):

cp -R /opt/cell/sdk/demos/FFT16M ~/
2. Prepare the Makefile.

a. Go to your recently created project structure and locate the following three
Makefiles:
~/FFT16M/Makefile
~/FFT16M/ppu/Makefile
~/FFT16M/ppu/Makefile

b. Modify the Makefiles to prevent them from trying to install executable files
back to the SDK tree, and introduce the required compilation flags for
profiling data. To do this:

* Comment out the install directives in ~/FFT16M/ppu/Makefile

* Introduce the -g and -W1,-q compilation flags in order to preserve the
relocation and the line number information in the final integrated
executable

The following is an example of how to change ~/FFIT16M/ppu/Makefile
for gcc.

##

Target
igddgddadsaddaddaddadaddasastadddddsdsgtadtadasadiadiddagdaddaditi
#

PROGRAM_ppu= fft
idgsddgadddaaddsadddgaddtsaddsdddsaddssaddadisdgsaddaddtgadaaitii
##

© Copyright IBM Corp. 2007, 2008 45

Objects
idgaddsddddsdddsdddsaddssdddsddddsdddsaddsssddsadddsdddsadddsadddsdddsi
#

IMPORTS = ../spu/fft_spu.a -1spe2 -1pthread -1m -1numa

#INSTALL_DIR= $(EXP_SDKBIN)/demos

#INSTALL_FILES= $(PROGRAM_ppu)

LDFLAGS_gcc = -W1,-q

CFLAGS gcc = -g
idgadasddddsdddasdddsaddssdddsddddsddasaddasaddsadddsdddaadddsaddadddsi
##

buildutils/make.footer
ifgdzadadzadsdsadsddsdsadsdaddsddsdsadsdaddsddsdsddtdaadsdsadaddsdaddsad
#

Note:
* No further Makefile modifications, beyond these, are required

¢ There are specific changes depending whether you use gcc our xlc as the
compiler

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

Changing ~/FFT16M/ppu/Makefile for gcc
Idgsddssddssdddssddssaddssddssaddsddasaddadaddsadddsdddaddsaddsdddsdi
##

Target
ldgadassdddsddddaddssadddsdddsddddsddasaddasaddsadddsdddaddsaddaadddsi
#

PROGRAM_ppu= fft
[dgaddsddddsdddasdddsadddadddsdddssdddsadddssddssdddsdddsadddssdddadddad
##

Objects
ifgdzatsdzaddsadsddsdzadsdaadsddsdsaddsadsdtsdsdddzadsdsadaddsdaadsad
#

PPU_COMPILER = x1c

IMPORTS = ../spu/fft_spu.a -1spe2 -1pthread -1m -1numa

#INSTALL_DIR= $(EXP_SDKBIN)/demOS

#INSTALL_FILES= $(PROGRAM_ppu)

LDFLAGS x1c = -W1,-q

CFLAGS x1c = -g
ldgaddssddssdddsaddssaddsadddsadddsddasaddasaddsadddsdddaaddasaddssddddi
##

buildutils/make.footer
[dgaddsddddsdddasdddsadddadddsdddssdddsadddasddasdddsdddsadddaadddadddsd
#

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

_ ~/FFT16M/spu/Makefile

Example: Changing ~/FFT16M/ppu/Makefile for gcc

igddaddsddsddsddadaddssdsddsdasddsddsdasdtsdssdtddssdgadgddsdasdaadadad
##

Target
igddsddsdsaddaddadsdtsdsddsdasddsddsddsdtsdssdddsdadaddsdaadaadaaiiad
#

PROGRAM_ppu= fft
lgddaddaddaddaddadadantasagsdgsddadtsatsntadadadaataataRagagdaiiad
##

Objects
lfddgddsddsddadsadaddssdsddsdasddsddsdtsdtsdssdsddsddaddtddsddsdaddaddad
#

46 Cell/B.E.Performance Tools Reference

PPU_COMPILER = x1c

IMPORTS = ../spu/fft_spu.a -1spe2 -1pthread -1m -1numa

#INSTALL DIR= $(EXP_SDKBIN)/demos

#INSTALL FILES= $(PROGRAM ppu)

LDFLAGS _xTc = -W1,-q

CFLAGS x1c = -g

st dddsaddsssddsaddtsaddsddddsaddgsddtaaddpsdddsaddgasddaadasadiiad
##

buildutils/make.footer
idgdddddddsdddssdddssddssdddssdddsdddsaddssaddaadddsdddadddsadaadddad
#

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

_ “/FFT16M/spu/Makefile

Introduce the -g and -W1,-q compilation flags in order to preserve the
relocation and the line number information in the final integrated
executable file.

Example: Modifying ~/FFT16M/spu/Makefile for gcc

idgdddddddsaddssdddsaddadddssddssdddssddssaddsdddsdddsadddaaddadddad
##

Target
idgsddssdddsaddssdddsadddsdddssdddsaddssddssaddpsdddsdddasdddadddaaddad
#

PROGRAMS _spu:= fft_spu

LIBRARY_embed:= fft_spu.a
idgdddddddsaddssdddsaddadddssddssdddsaddssaddsdddsdddsadddsaddiadddad
##

Local Defines
idgsddssdddsaddssdddsaddtadddsddddsaddssddsaaddpsdddsdddasdddaddaaddad
#

CFLAGS_gcc:= -g --param max-unroll-times=1 # needed to keep size of
program down

LDFLAGS _gcc = -W1,-q -g
idgsddgsdddsaddssdddsadddsaddssdddsaddssddtsaddpsdddsaddasdddsaddaaddad
#

buildutils/make.footer
idgddddddddsddddsdddsadddsdddssdddsdddsaddasadddadddsdddadddaaddaddddd
#

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

Example: Modifying ~/FFT16M/spu/Makefile for xlc

idgsddadddgadddaaddaddpaddadadsaddaaddaaddtadgdpaddsaaddgadaaadidiai
##

Target
ifgsddssdddssddsaddsgsddsadissdgdsaddgsddtasdtsdddsaddgsddtsdiadiad
#

SPU_COMPILER = xlc

PROGRAMS _spu:= fft_spu

LIBRARY_embed:= fft_spu.a
ifgddddsdddaaddsaddsgaddaadisddtsaddssadtsdisdgsaddgaddgaddaditi
##

Local Defines
idgadsdadddgadddgdddgaddpaddadddsagdgaasdgaddadapaddadddgadataadidii
#

CFLAGS_x1c:= -g -gnounroll -05

LDFLAGS _xTc:= -05 -qflag=e:e -W1,-q -g
ifgdddddddsaddsaddtgaddaadissdsdsaddgsadasdisdddsaddaddtgsddaditid
#

Chapter 6. Performance tools example

47

buildutils/make.footer

tH######## A A A A A A A AR A A A A A A A A A A A A A A A
#

ifdef CELL_TOP
include $(CELL_TOP)/buildutils/make.footer
else

include ../../../../buildutils/make.footer
endif

3. Before the actual build, make sure you set the default compiler accordingly. To
do this, issue the following command:
/opt/cell/sdk/buildutils/cellsdk_select_compiler [gcc|x1c]

4. You are now ready for the build:
cd ~/FFT16M ; CELL_TOP=/opt/cel1/sdk make

Creating and working with profile data

After you have set up the project tree and have a successful build, you can collect
and work with profile data.

About this task

The following steps describe how to:

1. |Collect data with Cell-perf-counter tool (CPC)}

[Display the CPC report in the Visual Performance Analyzer (VPA)

[Collect data with OProfile]

[Display the OProfile report in VPA]

Use Feedback Directed Program Restructuring (FDPR-Pro) to gather frequencyl

informatiogl

6. |Analyze and display FDPR-Pro frequency information in VPA]

Collecting data with CPC

The following procedure describes how to collect data with CPC.

ok wbd

1. Before collecting the application data, run a small test in order to verify that
CPC is properly work. Type the following command to measure clock-cycles
and branch instructions committed on both hardware threads for all processes
on all CPUs for five seconds, and you should immediately see the following
counter statistics:
cpc --cpus all --time 5s --events C

2. Collect counter data for the FFT16M application. The following example counts
PPC instructions committed in one event-set, and L1 cache load misses in a
second event-set and writes the output in xml format (suitable for the counter
analyzer) to the file fft_cpc.pmf:

cd ~/FFT16M
cpc --events C,2100,2119 --cpus all --xml fft_cpc.pmf \
./ppu/fft 40 1

3. This results in the following file:
~/FFT16M/fft_cpc.pmf

Example

A more useful way to use the CPC is to use the CPC --interval option to set a
sampling interval. Setting a time interval in which events are counted can show
the number of events occurring at different time units during the interval.

48 Cell/B.E.Performance Tools Reference

The following is an example of the CPC with the -interval option. Note the CPC is
split onto two lines because of the width of the printed page. The CPC is normally
one continuous line.

$ cpc -e 2100,2101,2106,2109 -e 2103,2104,2111,2119 -c all \
--sampling-buffer-size 15 --interval 100000000 -X fft_cpc2.pmf \
-t 10 ./fft 11410

The output file fft_cpc2.pmf now includes counted events information for each of
the following sampled events within the specified interval:

¢ Branch_Commit_t0
¢ Branch_Commit_t1
¢ Branch_Flush_t0

* Dispatch_Blocked_t0
* IERAT_Miss_t0

e IL1_Miss_Cycles_t0
e Instr_Flushed_t0

* PPC_Commit_t0

Displaying the CPC report in VPA

The generated counter information can now be visualized with the VPA tool.
Before you begin

You can download the VPA tool from
|http://www.alphaworks.ibm.com/tech/vpa/down1oad|

About this task

To display the counter information, do the following;:
1. Open VPA and select Tools > Counter Analyzer.
2. Select File » Open File.

3. Locate the fft_cpc.pmf file and select it.

Example
The result is something similar to the following screen, which shows the collected

counter information and a graph that displays the amount of events occurring at
every time unit during the sampling interval:

Chapter 6. Performance tools example 49

http://www.alphaworks.ibm.com/tech/vpa/download

% Counter Analyrer - fft_cpcd pml - Visual Performance Analyzer

Fle Edt Courder Tocls Window Help

WMUFEER uw CE@

Lre i owie -0 CINEN =0 s w5 =5
WA - =
=1 4 | Ewveniz (Cal) Average FProcessor () Name Valus
| Brareh_Comme_t0Hku] 1260524221 1,268,524 201 Genersted Time 20071211 115218
Eranch_Commi_11[Hku) 779,854,557 779.854 557 P:“\::-T; s
¥ - 5 = g7 L] cn FRL. ¥ nem
Branzh_Fluh Skl 176752 157675 M2 Carmand eps = 2100,2101,2106,2108 + 2103...
Dispatch_Blocked_$0khku) 4679.855057 4.679.855.057 =
IERAT_M; I4TEAIE 3,475,416 S i
_Miss _10fhkeu) 14754 L4754 Val Clock Duration 28.00
IL1_Miss_Cycies_tOfhkou] 1690030028 1590,030,028
nstr_Pushed_tHeul] 1032061143 1.032.061,143
PP Comerit_t0fiul 550,351 345 5 530,381 248
e >
I —
3 Description 53 =0l
Hame [Die: 1
Detaii [Metrca | CF1 Eveaiudann [i% Ll
W) Greph 12 £ =0
Branch_Commit_t1[hku] mex
EEL s . :
o a0 * * = ey i
1 85 175 22 b 436 513 610 67 734 5
& 5 Samples (sampled by the nterval of 0.032 seconds) "1:]'

Figure 2. Counter information displayed by the VPA

Collecting data with OProfile

The following steps generate appropriate profile information (suitable for the
Profile Analyzer) for both PPU and SPU, from the FFT16M application:

Before you begin

About this task

Before you run Oprofile make sure you remove any previous profiling options and
setup which can interfere with the profile generation process. To this, you should
completely remove (as root) the file daemonrc located under /root/.oprofile as

follows:

rm /root/.oprofile/daemonrc
1. Initialize the OProfile environment for the SPU and run the fft workload to
collect SPU average cycle events:

As root

opcontrol --deinit
opcontrol --init
opcontrol --reset
opcontrol --separate=all --event=SPU_CYCLES:100000
opcontrol --start
As regular user

50 Cell/B.E.Performance Tools Reference

fft 20 1
As root
opcontrol --stop
opcontrol --dump

To generate the report, type the following;:

opreport -X -g -1 -d -o fft.spu.opm

Repeat the steps for PPU. The following is an example of OProfile initialization
and run for PPU profiling:

As root

opcontrol --deinit

opcontrol --init

opcontrol --reset

opcontrol --separate=all --event=CYCLES:100000
opcontrol --start

As regular user

fft 20 1

As root

opcontrol --stop
opcontrol --dump

To generate the report, type the following;:
opreport -X -g -1 -d -o fft.ppu.opm

Displaying the OProfile report in VPA

Load the generated profile information with VPA and use the Profile Analyzer
plugin to display the information.

About this task

To display the OProfile report in VPA, do the following:

1.
2.
3.

Rem

%, Profile Analyzes - 1)-/Test Programa Aft_cxampleAft spu opm - Wausal Pesformance: Analyzer
Fle Ect FProffe Anchzer Toos Window Hel

BhIEA=h =

Open VPA and select Tools » Profile Analyzer.
Choose File » Open File.
Locate the fft.spu.opm file and select it. The following screen is displayed:

Modules section Symbol/Functions view

@oaa 2 = O [P D/ TestProgams fit_exampleft spu opm 57

Naw

& 4l- 7 | & %y Maoucpm (5906542.06cks) | cefalk courter: SPU_CYCLES | SPU_CYCLES % bol/Funcsons
Soo @IS Process > Com > Thvead > Wéoule 2602499 4405 man
| > IS Proosss > Thvead > Mox 2569549 4330 e
| & © tocalComnecton psckt) ® TS Procsss > Module 487605 825 processt192_816
15 Modules 173255 293 pmcess8192_0
(B #_sou (5906542 5cka/100.00%) 56382 056 stagel
6064 010 _gwef
5569 003 sage2
3783 005 wage3
596 001 _pack d
577 001 _unpack d
63 000 _do_global_chors_aux

@®s 2

mocde: ft_spu - Total courters: 5906542, b
mecude: Al Symbol under fi_spu

& .
Pl =
1 B

44.06%4350%8 26% 293% 1.25%

Total ticks (5906542), time share (100 00%) { 11 rows)
Soted Counter. SPU_CYCLES

Disassembly/ S:ueeCnoe— b Profie Detads | Java/Henr. | Profie Comp... | Temporal Pro | Guey Tree | CodeMnerG . — O
» =

C|B B RS | T O Lsngfor man M _spu. nons avalable)
e Ne

listing file has been associated.

Associate Fle.

Figure 3. fft.spu.opm displayed in the Profile Analyzer

51

Chapter 6. Performance tools example

52

4. Examine the disassembly information by selecting the fft_spu entry contained
inside the Modules section at the center of the screen (see [Figure 3 on page 51,
then double-click the main symbol in theSymbol/Functions view.

5. The result appears in the Disassembly view, as follows:

%, Profile Adyren - 1) /Tersd Prog ama /Ml _scxample AT spu opm - Vimad Perfcemancs: Ay ror

Fle ER Profie AMabier Took Window Hep
Bu@ashk =
Ren. @0wa. 2 Nei. = O 2F D TestPrograreth_earpiem sucon 7

R - 7 || & Py Rrpuoom (5506542 0scks } | defok courter: SPU_CYCLES]
= # B Process > Core > Threod > Modde

® © Local Connection (Hsgjch) 425 B i

R_sou (5308542 ticks /100 00%)

SPU_CYCLES
2602499

SLEUTFH

% Symbal/Functions

£4.05 man
a5 e

8.2 processB192_816
233 procens81352_0
0.95 stagel

010 _dhd3

009 sage2

0.06 staged

000 _do_glotal dos_sx

Totak boks (5905542, sme share (100.00%) { 11 ows }
Serled Courter SPU_CYCLES

m»mtmwm Profie Detals | Java/Herss . Profie Corp.. | Terparsl Pro._| Query Tree | Codetrer Q.| = O

Ofsets for: man §_spu)

Address Disassesbly

o 93qr $40, 0xb3a0
aL 30,8338
Qe 36, 0ub350
atqe $3%,0ub340
azge §38,0xb320
#zge 334, 0x5330
#3qr $30, 0xB300
rehent 453, sch2s
bra #53, 042268
hbrr 0x22a0, 0x508
cia00eb3 zech 5§57, 5er2s
34008088 1qe 33¢,33(52
0x0000237c Jec000ba owd 353,0(31)
0X00002220 bEeelcha

00002250

0829002254

4067835008 26% 293% 125%
moche: fit_spu - Total courters: 5906542 ome
modie: A Syrbol under f_sou

shufo 335,457, 456,458

@E >t |le”
s s Bemaziks A
o.03 [NGEEN ::5¢
o.0t [N :15¢
v

0 b - e Bytes.

Figure 4. Disassembly view for fft_spu.opm

Disassembly view

6. After you have double-clicked the symbol, the tool optionally asks you for that
particular symbol’s source code. If you have the source code, click the Source
Code tab at the bottom center portion of the screen.

%, Profile Analyzes - D-/Test Programs/Ht_example/Ht spu.opm - Visual Performance Analyzer

Fle Edt Profie Analyzer Tools Window Hep
B RNk =

Rem . | @ Dets. 23 Navi | = O HY D/TestProgrameth_eampietf soucpm 52
9 21 7 || 3 % fsou.cpm (5306542 01icks) [defauk courter: SPU_CYCLES]
= ® I Process > Core > Thread > Moduie

o
[Local Connection (Hegicb) zgp :zm:::wm
=-IE Modues

1R _spu (5906542 bcks./100.00%)

SPU_CYCLES

2569549

% Symbol/Functions
4406 man

4350 _eat

8.26 process8132_816
233 process8152_0
036 stage!

010 __dvdi3

Total: ticks (5906542). tme share (100.00%) (11rows)
Sorted Courter: SPU_CYCLES

Dsossontly/. [TENENWMEI Corpéer s Prfio Deals Java/Hear_ | Prtle Comp.. | Tempora Pro_.| Query Trs | CoveMiner@..| = 1

< 3
@s 2 .c|8 B|R S| T O souceforman f_spu) D:\TestPrograms\ft_exampie'F:_spu.c
LI ‘ L... Souzce
535 we2 = apu_maubles, cos_regz, wra);
93¢ weS = spu_maubles, cos_regd, wrd):
937 wed = apu_maub(cs, L wrd):
933 wzs = spu_maubics, 5, wes):
233 we6 = spu_maublcs, cos_reg, wré):
950 we7 = spu_nsublcs, cos_zeg?, wrT):
941 wi0 = spu_mul(cs, sin_regd):
942 wil = spu_mul(cs, sin_regl);
943 wi2 = spu_rullcs, sin_regl);
944 wi3 = spu_mul(cs, sin_regd);
945 wid = spu_pulics, =in_regd);
946 wi8 = spu_mul(cs, sin_regS);
247 wi€ = spu_mul(cs, sin_regé);
44.06°43.50%8.26% 283% 125% 942 wi7 = spu_mulics, sin_reg?);

madule: _spu - Total counters: 5906542, tne | | 949
module: Al Symbol under fit_sou

wi0 = 3pu_madd(sn, cos_regd, wid);
950 wil = spu_madd(sn, cos_zeql, wil);

&% S0 2~

4 SPU...
o0.10 [EEEEEE
0.20 NN
0.10 ENSSO0N

0.10
0.10
0.20
0.10
0.120
0.10
0.10
[aase
Ll
s
[szes
3238

1>

Figure 5. Source view for fft_spu.opm

Cell/B.E.Performance Tools Reference

Source Code view

7. To load a listing file that was generated by the compiler, select the Compiler

Listing tab and open the file. You can generate listing files at compile time

using the GCC flags: -Wa, -a, -ad or with the -qlist IBM XLC compiler option.

Optionally, you can repeat the procedure to analyze the fft ppu.opm profile
results.

Using FDPR-Pro to gather frequency information

In addition to using FDPR-Pro to optimize applications, you can also use it in
combination with the VPA Code Analyzer plugin to investigate application
performance, while mapping back to the source code.

About this task

Initially, you need to set up FDPR-Pro to collect the profiling data as follows:

1.

Clean up old profile information and create a temporary working directory for

FDPR-Pro:

cd ~/FFT16M/ppu ; rm -f *=.mprof *.nprof ; mkdir sputmp
Configure the fft executable file with the following command:
fdprpro fft -cell -spedir sputmp -a instr

This results in the following output:

FDPR-Pro Version 5.4.0.16 for Linux (CELL)
fdprpro ./fft -cell -spedir sputmp -a instr
> spe_extraction -> ./fft ...

> processing_spe_file -> sputmp/fft_spu ...

Vo

reading_exe ...
> adjusting_exe ...

> analyzing ...

> building_program_infrastructure ...

@Warning: Relocations based on section .data -- section may not be
reordered

> building_profiling cfg ...

> spe_encapsulation -> sputmp/out ...

>> processing_spe -> sputmp/out/fft_spu ...

> instrumentation ...

>> throw_& catch_fixer ...

>> adding_universal_stubs ...

>> running_markers_and_instrumenters ...

>> linker_stub fixer ...

>> dynamic_entries_table_sections_bus_fixer ...
>> writing_profile_template -> fft.nprof ...

> symbol_fixer ...

> updating_executable ...

> writing_executable -> fft.instr ...

bye.

Run the generated profile:

J/fft.instr 20 1

The following two files are created:

e ~/FFT16M/ppu/fftnprof # PPU profile information

* ~/FFT16M/ppu/fft_spu.mprof # SPU profile information

Chapter 6. Performance tools example

53

Analyzing and displaying FDPR-Pro frequency information in

VPA

The VPA Code Analyzer plugin imports information from the FDPR-Pro, and
displays it.

About this task

To import and display the information, do the following;:
1. With VPA open, select Tools » Code Analyzer.
2. Go to Tools » Code Analyzer + Analyze Executable and locate the original fft

executable file. Two editor tabs are displayed in the center view of the screen,
one for PPU and one for SPU:

PPUtab SPUtab

%, Codetruyno - INTERNAL - CADOCUME ™ 1 powmer\LOCALS 1\ | omp'\ape 54 1223\ _spu - Yousd Perdormance
e B Toos Wodow Hep /

// /
z-P0 I 7 Y4 s @ W%

Ba@BeNE .
B Fogoe T Ryvgaor O @ ranatens - poel | B
== & Fle ait Function: it Index 0 BR- adde a0 e Vi) aeec: 0
He Adorest Cooode Mrwwers) Corwrert Frea Graeh A
+ oo 0 "
201G -t
B8l AN
P B M
RN [
E—
|
sl % |
od 1 %1 |
an |
|
N |
|
ey rk 7N tod, _swt o |
mnréds) |
k1 |
-t 2 | b
>
W recon Propatas
Eranch Proble \okue Profife | Depetch rfo | Latercy o
Te Addwas Court

™ 9l

Figure 6. SPU and PPU editor tabs opened in the Code Analyzer

3. Associate the PPU profile information. To do this, select the PPU editor tab
view and click File » Code Analyzer » Add Profile Info, then locate the
fft.nprof file.

54 Cell/B.E.Performance Tools Reference

% CodeAnayzer - CADOCUME ™ T\tpowner\LOCALS ™~ 1\ Temp \spe 32585d \Black Scholes_spu - Visual Performance Analyzer
0 Edt Tools Window Meb

New VIERR & &y 2-m9
Fi
Open Fls) @ natrucsons - (pe) @ ratructcns - boa)
:noName 10 Function: main Index: 43 BB. addr: Ox4d20 size: 110(4
Cooe Qs o " ke G
Ciove N QrieShiteW T N ¥
|] ;) :co):c Cxccutabie Bo om0
1 BlackSchxien_su DOCUNE™tporac’. | EEETIT -
2 BlackSchoies [/ TeetPrograme) ol Add Sampleg ifo :i:k
- A LOCALS™Y/)
3:—? 11?;-,,,-'WE : WAL @ Colect Dapatch Gowp rlo. a7
- o A\ Colect Hazard o y20.16
Bt 0.1
R) R Ackiors * bos
= (2 noNemeS Oudad Qatetics * 8.1
* noNamel Ocddis w196
5 & noName? Oudee Deice80081 a1 56
* process 2048 Onédée Oe3atse2 i 86,021
= i noNameS Oesd50 Oed 1000003 hurs6)
[process102¢ (L O30t 63 0x5d
= & noNomed (cdaSs (41000006 hurse
* process_al OeddSc Bc3400c0ct lqd 85,4851
=5 (& noName10 edds) Oue 20 fa r67.24064
* man Oedats 35300000 her Budetd

Figure 7. Adding profile information

4. Repeat the same procedure for the SPU part. To do this, select the SPU editor
tab, and click File » Code Analyzer »+ Add Profile Info, then locate the
fft_spu.mprof file. After you load the profile information, the instructions in
both editors tabs are displayed in red, which indicates that these instructions
are very frequently executed (refer the color-coded execution frequency scale
displayed at the bottom of the screen).

Execution frequency for
each instruction

. CodeAnabyzer - INTERNAL - CADOCUME ™ 1\powner\LOCALS ™ 1\ Femp\spe 34 1 2240\t _spu - Visuol Perfomonce Andyzer
Fe E® Tock Window Hep

BWPR%NER 2-W9
W Fosren Tow Mavigater =
e NN
Fle: procesaB192_816 Funclion

DEE

z Py

o162 e 6 1850
e 228352

5 162,65

prcesst152_t

E 1%
| pocesd1sz 316

w ot 7

@ 4medsisrds

= Oetiad o rd7. 0668

@ i ne - *

R v | >
B Corecie 1 = = 0 [l rsucsen & o]
weTerple

Profie | Vi Dpat: o
ACTIVE s com bom vps ca sdtors ructiona Edtor S65c(05c SSNEh NS i Balia] Chputci i | sy b
ACTIVE e bm vpa ca edtons instructiorsEdtor® 1ade Tade To Addess.

Court
ACTIVE edee czen bom vpa 2a edtens. hutrctioraEdtor® lade lade

T

/
. red = most frequently executed
Execution frequency scale

Figure 8. Code Analyzer showing execution rates

5. You can also associate the source code by selecting symbols in the Program
Tree. To do this, right click and select Open Source Code, then locate the
source code. The Source Code tab displays rates of execution per line of source
code in the center of the screen, see XREF. Click the Link with Table button at
the top of the displayed source file, as follows:

Chapter 6. Performance tools example 55

W, Codntndyres - D \Tet Mo ¥ - Vsl Portomeron Andyres

fe Em Toos Wiedow Hed

XRANN €€~

BHFPEANY JBd G2

‘e @ rerstore poe ® @ retrctiors - ool ® oy -
] Fle roNamed Functien man index 47 B add Ox 10164 sae
% &M Advee Cpoode Meoc C fma A
FILE o Nosmed FUNCTION matn
1801088
S1900448
% 130184e
> 101

Figure 9. Code Analyzer with source code tab

6. Calculate dispatch grouping boundaries for both fft PPE and fft SPU tabs. To
do this, select each tab and click Collect display information about dispatch

returs

Cloat)

groups. You can also simultaneously click Collect hazard info to collect
comments about performance bottlenecks above source lines that apply.

%, CodeAnadyzer - D \Test Programs it - Visual Pedormance Analyroe

Figure 10. The Collect Dispatch Grouping and the Performance Hazard buttons in the Code

Analyzer for PPU instructions

56 Cell/B.E.Performance Tools Reference

Fle Edt Tods Wndow Heb
BHIEN: D84 G2 asERULN £émia -8 B-BW i ko
Wees Newg.| = O @ instructions - spe) & _sou 0| Source Code Ol w0 (3|Y =0
File: main Function: man Index 269 B8. addr- Ox 1802008 size: DATestPrograme Vit ¢
TSR WL N | 8 Addees Opcode Mremo.. Commert Freq GeoAl [} frcat crigfunciint im) am
5 A double x;
C oas0ze. Oets. xotsdr. & 6 & x = ((double) i 31
COoastde. GAXI0. w2l § -
8 ~ || Coasoze 000010, wwr02 6777216 }
C 1202 Ocbeld. ¥df312 16 C %
C o120 OAMH028 fabf3) 677726 [1ot main(ine arge, char vargv
C 1502 OMMOS2 fmif31 6777216 -
= C 1802 OAMOET2 . fmud 131 216
[18020 04c208. fmef1531 6777216
8 1800 | (x43000. [Oc0nE . B 16777216 B
o
int elapsed ®
8 C o202 Offcicd.. faddfl0. [Comments
I o802 OdcWi2s faddf1f Hot bwloﬂﬁmbr.\‘:v S Y
L ez otoco. bioone 4ffet Funcon Calto: 001603740 . o
= - - e Qoat branch weh a cold faltheu to: x01203760 P
Todenask_t &
e C 1802 OxTclon.. HexfO3 int max_node a
[08020 OfiGe0s. fadsf20 it xe: i
8 C o180z OACODIE frap 1301 / a
C 01802, OuecOl.. fabafd B it g o B
C 1802 OAE00.. fempu o ncycles = a !
!l M oe0ze. 0400, bea?. & I | printflag = at
< > < > <
D Corscie 0 [l nscton Propenes
a1V LR AT AT ¥ A 4 AR R 9 00 50 Sl -
Fle retumed by LNL R ¢ Branch Profle | Value Profle | Dmoatch o Latency info
geePammToFde - O\ TestPrograms
Rt 123 Ende125 St 0
Fie retumed by LNI. R ¢ BRU
getPatnToFde - D\ TestPrograms XU
Sate 129 Evae123 U
Fie retumed by LNt ¢ v
aetPathToFde - D\ TestProgams VKU
0

b Codenaty s - CA\DOCUME™ T\ powner \LOCALS™ 1\ Temp \spe40 73S I _spu - Visuasl Pordormance Aoy v
Fle Edt Toos Window Help
BHEPEYHR MBJd @4 a0l £ #-8 B-BW| i i
| ESTAE R R R YOS E S (| ratnuctons - (spe) fft_spu X ™ Source Code Ol (&) S OMs2 =0
= |File: process8192_816 Function: process8152_816 index. 68 BB. D\TestPrograms VR _spu.c v
TR A Addess Opcode | Mnemo.. Comment Frq Gl B Ls = (1 << Il3); A IR
[Bxilcc Oclclf2. arSis &
: C o0 Olcle2 airiss
Cxx10s4 D23el. larB22. & >mm
0068 OOFaatd rotmai6 %
10 034002 kdr120. A 43868160
o [Bc10ed Ol rotmaird
5 i dom e || L Oct0ed BASI00_ hbraD 43968160 spiats(saiv
= @ call__do_global_dtors 2
8 @ cal__do_gobel do Oxi0ed Octile cprbls 4 7)s
Oxilec (xBB_ rolabyrl.. A 1ra>>2
e |andel0s_ B /4 int ks
g COame 0608 s & 2 register vector f
18 08178 ardsSrs G—’n:m Ry e gister vector f
& Balfc DAY lqerish gdsledford c : SPE RSsouces) Ly aeer vector €
(0100 Oami7e. arkaa SrESBIACIE G syt onp 00000IH 1ster vector £
Lodine oassre ixns, register vector £
C o108 OBE20. rotgbyed.. & 43968160 register vector £
Coaioe Ga8IB. roigby 43866150 register vector £
Coane o2 imsA7. & 43968160 register vector £
& YICnne nEae1) mod] o810 o ans wamh = atmewr
< > < > < >
3 Cormole 2 O | i nstruction Propeeies 51 E =0
Sant» 335 Ende8%S a -
ACTIVE edtor com fm vos ca edtors. bnfnuctions Edtor @ Taec Taec Seanch Prote | Vekue Prolle | Oiepetch Ho | Latency info
Fle retumed by LNE & spuc 0dd
R Doy |
—— Branch Hie (SLS)
éﬁTrl.\;E m;ff'rl'.": :? edtors nauctionsEdtor@ Taec Taee “ scH) 1
getPethToFde - D \TestPrograms Channel Irtedface (S5C) |
St 395 EndeBS5 Shudfie (SFS) |
Load NOP |
|
0

Figure 11. Hazards Info commented source code for SPU instructions

7. Display pipeline population for each dispatch group. To do this, select the
Dispatch Info tab (inside the Instruction Properties tab), then click the Link

with table button.

Link with table button

' . Instruction Properties 232

Even
FPU Single-Precision (SFP)
FPU Double-Precision (SFP)
Floating-Point Integer (SFP)
Simple Fixed Poirtt (SFX)
Word Rotate and Shift (SFX)
Byte Operations (SFF)
_Execute NOP

Load and Store

Branch Hint (SLS)

Shufi

Channel Interface (SSC)
S)

{SLS)

Figure 12. The Dispatch info tab with the Link with Table option selected

The Latency Info tab displays latencies for each selected instruction, see

[Figure 13 on page 58

Chapter 6. Performance tools example

57

Latency Info tab

. Instruction Properties 23

| Branch Profile | Value Profile | Dispatch Info | Latency info |

Instr. Group Latency Lol
Branch Resolution
Channel Interfface
Single Precision
Double Precision
FPiteger |7
Shuffle
Simple Fixed Point
Word Rotate and Shift

[y, ——

]~ O O s
w

ORI

Figure 13. Latency Info view

8. You can also use the Code Analyzer to inspect SPU Timing information at the
pipeline level, with detailed stages of the Cell BE pipeline population. To do
this, select the fft SPU editor tab, locate the desired symbol on the Program

Tree, right-click and select Show SPU-Timing,.

The full pipeline layout is displayed as follows:

%, Code Arwatyrer - Visusd Perormance Analyres

fle §& Ppeine Joos findow Hep

Bu@aNn B! TN S R & -

22 0/ TesProgams®_sample M ucom @ hanusors -goe) @ rstrucsons - (5] ®_spu e
QX Q- (w0 .

qqoéoo
600000
000000
000000
800000
TTOT0D
000000
000000
000000
090000

258

L

2
B
St
&

2
%;

Sl

FEFEIRIR
2
=

2

L4
i

%
28

:

ke

ETETETET

:

3B3zak

gg.
8

*
&
2
§ 3

;

858686868586868886888586?686858885‘
3

ERECEREECRICERETRRICERETERRRER RIS

FEFETFIEFEIRIET
i

3P
&
3
2

opoooo

R

Figure 14. Cell Pipeline tab

9. Click the Pipeline Analyzer icon to navigate in the trace.

58 Cell/B.E.Performance Tools Reference

Pipeline Analyzer button

Tools Windc

The following navigation view is displayed.

s Pipeline Analyzer - process8192_0 - Visual Performance Analyzer

File Edt Pipeine Tools Window Help

B EA=[h

B Pipeine View 52 Q Q o -

General Offset IS

Cycles: 178 Base: -1:1 =

Lines: 240 Cursor: 25:0

Divider: 1 Offset: 26:1
Event Message

L D/TestPrograms ft_exampleftspuopm | @ Instructions - ppe)fit | @ Instructions - (spe)ft_sou [t R

Figure 15. Navigation view

Creating and working with trace data

The PDT tool produces tracing data, which can be viewed and analyzed in the

Trace Analyzer tool.

About this task

The following topics describe how to:

1

. |Create and work with trace datal

2. [Import PDT data into VPA|

Collecting trace data with PDT

To properly collect trace data, you need to recompile the fft application according
to the required PDT procedures:

1.

Prepare the spu Makefile according to PDT requirements, depending on the

compiler of your choice:
Example: Modifying ~/FFT16M/spu/Makefile for gcc compiler

tH######### A A A A A A A AAAAA A A A A A A A A A A A A A A A A AR R AR A
##

Target

FHEFERR AR AR A A A R AR AR R R R R A
#

PROGRAMS _spu:= fft_spu

LIBRARY_embed:= fft_spu.a

#H######## A A A A A A A AR A A A A A A A A A A A A
##

Local Defines

#HFFERRRRA R AR R A A A A AR AR R R A A
#

CFLAGS_gcc:= -g --param max-unroll-times=1 -Wall -Dmain=_pdt_main
-Dexit=_pdt_exit -DMFCIO_TRACE -DLIBSYNC_TRACE

LDFLAGS gcc = -W1,-q -g -L/usr/spu/lib/trace

INCLUDE = -I/usr/spu/include/trace

IMPORTS = -Ttrace

#HEFERRRRA AR AR R AR A A A A R AR A R R R R AR A
#

Chapter 6. Performance tools example

59

buildutils/make.footer
[igdddsddddsdddsadddsadddadddsdddssddassdddadddadddssdddsdddaadddsadddsd
#

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

Example 6-9 Modifying ~/FFT16M/spu/Makefile for x1c compiler
[fgdgdddzadsdsddsddsdsadsddadsddsdzadsddadsatsdaddsddadsddtdaddsdaddadd

##

Target
[fgdddssddssdddgsdstaadissddtaddssdddaadisadtaaddsdsdaaddaadiasdatiad
#

SPU_COMPILER = xIc

PROGRAMS _spu:= fft_spu

LIBRARY embed:= fft_spu.a
iidgassdddddgasaddddsdsasaddddddsssaddddddsasdddddtsdsaddsdasdaddadid
##

Local Defines

#FEH AR AR A R R R R R A
#

CFLAGS_x1c:= -g -gnounroll -05

CPP_FLAGS x1c := -I/usr/spu/include/trace -Dmain=_pdt main
-Dexit=_pdt_exit -DMFCIO_TRACE -DLIBSYNC_TRACE

LDFLAGS_x1c:= -05 -qflag=e:e -W1,-q -g -L/usr/spu/lib/trace -1trace
iz gdddddsasaddddddsssaddddddssaddddddadaaddddatddaddddaasdaddadiad
#

buildutils/make.footer
iidgassaddddsassddddsdsssaddddddsssaddddddssasdddddpsaaddsdassdndaadiad
#

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

Modifying ~/FFT16M/spu/Makefile for xlc compiler
ddasgdddiassddddisasiddisasatddisassdaddaaapdddsaapdaiaaaaaiadanni

##

Target
idddaaaadaadaaaandaadsaaadasadpaaadssddpaaadiddaaaadadaaaaansgddai
#

SPU_COMPILER = xlc

PROGRAMS spu:= fft_spu

LIBRARY_embed:= fft_spu.a
[fdddzdsdsdddaddddddsdsdsdadadadadaddddsdsdsdadadadaddddddddsdgdadadadad
##

Local Defines
[fdgdzdsdsddddddddddsdsdsdsdsdaddddddddddsdsdsdadsdsddadddsdsdgdadsdadad

#
CFLAGS x1c:= -g -gnounroll -05
CPP_FLAGS_x1c := -I/usr/spu/include/trace -Dmain=_pdt_main

-Dexit=_pdt_exit -DMFCIO_TRACE -DLIBSYNC TRACE

LDFLAGS x1c:= -05 -qflag=e:e -W1,-q -g -L/usr/spu/lib/trace -1trace
[dgdddsddddsdddsadddssddsadddsdddssdddssdddadddsdddssdddsaddaasddsadddsd
#

buildutils/make.footer
[fddgdddzaddsddaddsdsadsddadsddsdzadsddadatsdaddsddadsddtdaddsdaddadd
#

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else

include ../../../../buildutils/make.footer

endif

2. Rebuild the fft application:

60 Cell/B.E.Performance Tools Reference

cd ~/FFT16M ; CELL_TOP=/opt/cell/sdk make

. Set up a configuration file with only the relevant stalls (mailboxes and read tag
status for SPE):
a. Copy the default xml to the place where the FFT runs, so that you can
modify it.
cp /usr/share/pdt/config/pdt_cbe configuration.xml ~/FFT16M

b. Open the copied file for editing. At the first line, change the application
name value to fft.

c. Search for <configuration name="SPE"> and below that line you find the
MECIO group tag. Set it to active="false". Then delete the SPE_MFC
group. This should be sufficient to trace only the *stalls* in the SPE.

Prepare the environment. To do this, set the following variables:

export LD_LIBRARY_PATH=/usr/1ib/trace
export PDT_KERNEL MODULE=/usr/1ib/modules/pdt.ko
export PDT_CONFIG_FILE="/FFT16M/pdt_cbe_configuration.xml

. Run the fft application at least three times to get better sampling:

cd V/FFT16M/ppu ; ./fft 11410

The following trace files should be available after you have run the application:
* .pex,

* .map

* .trace

. It is recommended that you use the PDTR tool to generate a textual summary
report. To do this, type the following:
§ /usr/bin/pdtr -trc <generated pdt trace file without its suffix>

This produces a summary reports file with the suffix .pep.

Importing PDT data into VPA

The VPA Trace Analyzer plugin displays the application’s stages of execution. It
works with data generated from the PDT tool, more specifically it reads
information available in the generated .pex file.

About this task

Do the following to display the data in the Trace Analyzer:

. With VPA open, select Tools » Trace Analyzer.

2. Go to File » Open File and locate the .pex file, generated in|“Collecting trace]

[data with PDT” on page 59 The following screen is displayed:

Chapter 6. Performance tools example 61

P Trace Analyzer - INTERNAL - NO PROFILE/FILE LOADED - Visual Performance Andyzer
Fle Edt Search Tools Window Heb

BhPENR heaqay «w

. Nagator 52 . | o
v | B% T Toccococo Toonooooon E00000000 I
| 1= eanple PPE —
13 proect P |
dacs_cel_sop 10524, 15mce L L]

[2 dacs_cel_app 2007091410524 maps

L= dacs_cel_app-20070974110524 ps0

" decs_cel_spp-20070914110524 pex
example-20070312101746.13race .

- eample-20070912101746 maps.
exanmpie- 107746 pex

2 exampie-20070512104723. 1 v2ce spe2
example 2007031104728 maps

SPED

12 wampie 2007812104729 980
T cramoe- 2070512104725 o8 SPE3

[Trace Tabke 2 B =8| s
|| Trace ie: [0 O \TestProgams & _sample 11

:) =

SPES

SPE_TRA
SPEMFC
MAFS

‘ w500 | A mconds out of 24638 § ~
(e 500) (v 520) 1B Color Map Vew 3 7 O] @ Racord Detals 51 =0)
index || Recondtype | Reccrd No CoorMep:CEL]

1 TRACES. 0 L .]
2 CONTEXT... 0 Name Calor

[3 sepro. o = MFCO | |
& was]

. =

| T —

7 SPECON. 0
[0
9 0
1 1

Figure 16. Trace Analyzer screen

Note:

* The default PDT_CONFIG_FILE for the SDK establishes the trace files prefix
as "test”. If you have not modified the file, look for the trace files, which
have "test” as the prefix.

* Remember to unset LD_LIBRARY_PATH environment variable, before you
run the original (non-PDT) binary later.

corresponds to the FFT16M application run with 16 SPEs and no
huge pages. A less intensive blue has been selected for the MFC_IO group, and
you now see the difference between the borders and the internals of the
interval. The color map has been used to change the color of read_in_mbox to
be red rather than its group’s default blue. You see a huge stall in the middle.
This is where the benchmark driver verifies the result of the test run to make
sure the benchmark computes correctly. The timed run is the thin blue strip
after the stall.

3. Zoom into this area, which is all that interests you in this benchmark.

62 Cell/B.E.Performance Tools Reference

& Trace Analyzer - fft16m-20070821090852.pex - Eclipse SDK
File Edit Navigate Search Project FieldAssist k n Window Help

i o D AL = e e R aq&
B (% Navigator 2 =g 6 90852.p =5
s 1 ~
1 T v
& Execution stage 1182000000 1183000000 8400000
characterized by longer N - '] - =
stalls

I [Stitiom-2007082108]

Stall durations are very
large

[>fft16m-2007082202
5 >#16m-2nn7087202. %
< i |

i= Trace Table &1 B~-=0
Trace file: | 0 in C:\work\traces\PeTrac
v[500 | A records out of
)8 oo

SPE_MFC_READ_TWG_STATUS #22807

Index Record type Record 20 = Color Map: | &M v
23455 SPE_MFC_READ_T.. 22800 | Name Value >

23456 SPE_MFC_READ_T.. 22801 | EventName SPE_MFC_READ_TAG_STATUS ||| Name

23457 SPE_MFC_READ_T... 22802 || Duration # MFCIO

23458 SPE_MFC_READ_T.. 22803 | Coreld 2 ® LIBSPE2

23459 SPE_MFC_READ_T... 22804 | Timerld 14 & GENERAL

23460 SPE_MFC_READ_T.. 22805 || StertTime_ 102140747 LVE

23461 SPE_MFC_READ_T.. 22806 | EndTime_ 0215445 v

23462 SPE_MFC_READ_T... 22807 | ¢ =~ | >

Figure 17. Zoomed trace view

shows how the mailboxes (red bars) break the execution into six

stages. Different stages have different behavior, for example, the third and sixth
stages are much longer than the rest and have a lot of massive stalls. The Trace
Analyzer allows you to click a stall to select it and to obtain further details (as
shown in by the yellow highlight). The selection marker rulers on the
left and top show the location of the selected item (and can be used to get back
to it if you scroll away). The data collected by the PDT for the selected stall is
shown in the record details window. In this example the stall is huge; almost
12K ticks.

You can now check Cell BE performance tips for a possible cause of the stall,
and see that TLB misses is a possible cause, and huge pages are a possible fix.

Example

This is an example of how trace visualization allows you to discover a significant

amount of information regarding the potential application problems.

What to do next

It is possible to observe how well balanced the application is by looking at how it
executes and the start/stop time for each SPU. Because the Trace Analyzer breaks

down the causes of stalls in the code by type, you can identify synchronization
problems.

Chapter 6. Performance tools example

63

64 Cell/B.E.Performance Tools Reference

Appendix A. PDT troubleshooting

This section describes known issues that you may encounter and suggested

solutions.

* Missing/wrong PDT_CONFIG_FILE environment variable at runtime
Symptoms: when running the user application (with PDT enabled) the following
message appears: "(PDT) ERROR: Environment variable PDT_CONFIG_FILE
was not set.”

Solution: Set PDT_CONFIG_FILE to the right PDT configuration file.

¢ Missing/wrong LD_LIBRARY_PATH environment variable at runtime
Symptoms: when running the user application (with PDT enabled) one of the
following happen: a. Bus error: likely when a SPU starts running (when

spe_context_run is called). b. Message: "error while loading shared libraries:
libtrace.so0.3: cannot open shared object file: No such file or directory”.

Solution: In both cases, the LD_LIBRARY_PATH is not set, incorrectly set (wrong
path or 32/64 path error), or the paths’ order is wrong where the PDT library
path appears (/usr/lib[64]/trace) after another path so another library occlude
the PDT library.

* Missing context switch notifications in trace file
Symptoms: No context switch notifications records exist in the output trace files

Solution: For RHEL 5.2, verify that the PDT kernel module is installed. For
Fedora 9, ensure the you are using kernel version 2.6.25 or later.

 Config XML file errors
Symptoms: the following messages are related:
1. "(PDT) ERROR: Invalid group name GROUP”
2. "(PDT) ERROR: Invalid group id GROUP_ID, for group : GROUP"
3. "(PDT) ERROR: Invalid subgroup name: SUBGROUP on group GROUP”
4)

. "(PDT) ERROR: Invalid event name: EVENT on subgroup SUBGROUP and
group GROUP”

"(PDT) ERROR: Invalid event id EVENT_ID for event EVENT of subgroup
SUBGROUP and group GROUP”

"(PDT) ERROR: The file FILE was not found”

"(PDT) ERROR: Invalid file FILE.”

"(PDT) ERROR: FILE is not a file.”

"(PDT) ERROR: Processor PROCESSOR does not appear in the
configuration”

10. "(PDT) ERROR: Unknown processor type PROCESSOR”

Solution: for 1, 2, 3, 4, and 5, the respective throttling sections of the config file
should be checked. Problems 6, 7, and 8 mean that the value of the
PDT_CONFIG_FILE environment variable is wrong (e.g. the file doesn’t exists, it
is not an XML config file, the file is corrupted, the value is a directory instead a
config file, etc.). Finally, 9 and 10 indicate that the "<configuration

name="PROCESSOR">" tag in the config file is missing or an unknown
processor for PDT.

o

© 0o N

* 32/64 bit compilation and/or linking errors
Symptoms: Cannot compile/link the PPU program with PDT libraries.

© Copyright IBM Corp. 2007, 2008 65

Solution: Re-compilation of the PPE code is needed when user events or
dynamic control were added to the code, and re-linking is needed when
compilation is needed or the SPU code is embedded in the PPE executable.
Make sure that "-I[/opt/cell/sysroot] /usr/include/trace” flag is used for
compilation and "-ltrace” and "-L[/opt/cell/sysroot]/usr/lib[64]/trace” are used
for linkage.

¢ The program terminates with bus error when starting the SPE program run.

Symptoms: The program terminates with bus error or segmentation fault when
starting the SPE program run.
Solution: First, check that the LD_LIBRARY_PATH is defined correctly (see
problem "Missing/wrong LD_LIBRARY_PATH environment variable at
runtime”). Check that the SPE was compiled with PDT, specially look for the
-Dmain=_pdt_main flag. If this is not the problem, recompile the SPE code with
-Os (optimization for shorter code), in order to verify that PDT code in the SPE
executable does not grow the executable to a size bigger than the 256K size
allowed.

 Irrelevant context switch notifications

Symptoms: In the output trace files, there are some context switch notifications
with an unknown thread ID value.

Solution: Do not relate to this context switches. Also, make sure that the SPEs
are running before trying to access their problem state (e.g. send a mailbox, etc).
In addition, only one user can use PDT at a time.

* Implicit declarations when compiling SPE or PPE
Symptoms: "warning: implicit declaration of function "trace_XXXXX" ".
Solution: The trace_* functions were added to the code but their respective
"#include” are missing. (It is possible that the name of the function is wrong,
too).

* Static event recording throttling are not working, the events are or are not
recorded according to the user setup in the configuration file.
Symptoms: Undesired events are recorded, or, desired events are not recorded.
Solution: Check the XML configuration file pointed by the PDT_CONFIG_FILE
environment variable.

* spu_mfcio events are not recorded.
Symptoms: spu_mfcio (SPU) events are not recorded in the trace file.
Solution: Make sure that the flag "-DMFCIO_TRACE" is in the compilation of
ALL the SPE files. Also make sure that the flag "-I[/opt/cell/sysroot]/usr/spu/
include/trace” appears as the first include flag ("-1") in the compilation
command.

* Large unexpected intervals in almost all the SPEs and PPE simultaneously
Symptoms: The trace shows large intervals in many SPEs and PPE at the same
time.

Solution: If the intervals durations are intersected by a "DAEMON interval”,
then PDT was halted for some milliseconds by the OS. Do not infer that these
large intervals are problems in your code.

* The output trace files are not in the right directory or are not found in the
expected directory.

Symptoms: No trace files in the expected directory.

Solution: Check if the PDT_TRACE_OUTPUT is defined and see if the files were
not written there. If the environment variable wasn’t defined, check the output
directory that is defined in the configuration file and see if the files were not

66 Cell/B.E.Performance Tools Reference

written there. Check that the directory exists and that write permission is
granted for the current user. Note that if both are not defined the trace output is
directed to the current directory.

Large amount of trace files are written to the disk and the program fails
(although the program runs without PDT enabled).

Symptoms: Many trace files are written to the disk and the program fails with
error.

Solution: Check space in the hard disk. Try using static or dynamic throttling to
decrease the amount of events written to the trace files.

PPE linking problem with -ltrace

Symptoms: When linking the PPE code,"-ltrace” and "-L/usr/lib[64]/trace”
should be added, and then the message "undefined reference to
*_Unwind_GetIPInfo@GCC_4.2.0"" shows up.

Solution: add also "-Istdc++" flag to the PPE linkage
Opteron produces "Illegal instruction” when PDT is enabled
Symptoms: The above is generated by PDT

Solution: The problem is with the RDTSCP assembly instruction used by PDT.
RDTSCP is a feature that is not found in all AMD processors. It was introduced
in AMD’s NPT Family OFh processors. Make sure you are using one of those.

PDTR problem with stripped executables

Symptoms: In the pdtr output (.pep output file), instruction and/or data
addresses are not mapped to symbolic names (or shows unknown(), no_map(),
unknown-no_symbol_map()), and/or WARNINGS from pdtr tool indicating "no
symbol map”).

Solution: ignore or rebuild the executable and do not strip
Issues related to the PDT kernel module (RHEL 5.2 only):
— Message "insmod: error inserting "pdt.ko”: -1 File exists”

Symptom: The kernel is trying to be loaded by two processes (two persons
trying to run a program with PDT at the same time).

Solution: Do not run two processes with PDT at the same time.

— Message "insmod: can’t read /usr/lib/modules/pdt.ko”: No such file or
directory”

Symptom: The kernel cannot be loaded because it was not installed or the
kernel module env variable is wrong. Note that the path in the message is the
current module path that is trying to be loaded.

Solution: Install the PDT kernel module if missing or set the
PDT_KERNEL_MODULE to the actual directory.

— Message "ERROR: Module PDT does not exist in /proc/modules”
Symptom: The kernel can not be unloaded because it was not loaded.

Solution: Install the PDT kernel module if missing or set the
PDT_KERNEL_MODULE to the actual directory.

— Message "There will be no error message (the first unloader will succeed)”

Symptom: The kernel is being unloaded twice (two processes trying to unload
the module, one owns it and the other tries to unload it).

Solution: Do not run two processes with PDT at the same time.

Appendix A. PDT troubleshooting 67

68 Cell/B.E.Performance Tools Reference

Appendix B. Related documentation

This topic helps you find related information.
Document location

Links to documentation for the SDK are provided on the IBM developerWorks Web
site located at:

|http://www.ibm.com/developerworks/power/cell/|

Click the Docs tab.
The following documents are available, organized by category:

Architecture

* Cell Broadband Engine Architecture
* Cell Broadband Engine Registers

* SPU Instruction Set Architecture

Standards

e C/C++ Language Extensions for Cell Broadband Engine Architecture

¢ Cell Broadband Engine Linux Reference Implementation Application Binary Interface
Specification

* SIMD Math Library Specification for Cell Broadband Engine Architecture

e SPU Application Binary Interface Specification

* SPU Assembly Language Specification

Programming

* Cell Broadband Engine Programmer’s Guide

e Cell Broadband Engine Programming Handbook
s Cell Broadband Engine Programming Tutorial

Library

e Accelerated Library Framework for Cell Broadband Engine Programmer’s Guide and
API Reference

* Basic Linear Algebra Subprograms Programmer’s Guide and API Reference

* Data Communication and Synchronization for Cell Broadband Engine Programmer’s
Guide and API Reference

* Example Library API Reference

s Fast Fourier Transform Library Programmer’s Guide and API Reference

* LAPACK (Linear Algebra Package) Programmer’s Guide and API Reference
* Mathematical Acceleration Subsystem (MASS)

* Monte Carlo Library Programmer’s Guide and API Reference

e SDK 3.0 SIMD Math Library API Reference

* SPE Runtime Management Library

* SPE Runtime Management Library Version 1 to Version 2 Migration Guide
* SPU Runtime Extensions Library Programmer’s Guide and API Reference

© Copyright IBM Corp. 2007, 2008 69

http://www.ibm.com/developerworks/power/cell/

Three dimensional FFT Prototype Library Programmer’s Guide and API Reference

Installation

SDK for Multicore Acceleration Version 3.1 Installation Guide

Tools

Getting Started - XL C/C++ for Multicore Acceleration for Linux
Compiler Reference - XL C/C++ for Multicore Acceleration for Linux
Language Reference - XL C/C++ for Multicore Acceleration for Linux
Programming Guide - XL C/C++ for Multicore Acceleration for Linux
Installation Guide - XL C/C++ for Multicore Acceleration for Linux
Getting Started - XL Fortran for Multicore Acceleration for Linux
Compiler Reference - XL Fortran for Multicore Acceleration for Linux
Language Reference - XL Fortran for Multicore Acceleration for Linux

Optimization and Programming Guide - XL Fortran for Multicore Acceleration for
Linux

Installation Guide - XL Fortran for Multicore Acceleration for Linux
Performance Analysis with the IBM Full-System Simulator

IBM Full-System Simulator User’s Guide

IBM Visual Performance Analyzer User’s Guide

IBM PowerPC Base

IBM PowerPC Architecture Book

— Book I: PowerPC User Instruction Set Architecture

— Book II: PowerPC Virtual Environment Architecture

— Book I1I: PowerPC Operating Environment Architecture

IBM PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology
Programming Environments Manual

70 Cell/B.E.Performance Tools Reference

Appendix C. Accessibility features

Accessibility features help users who have a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

The following list includes the major accessibility features:

* Keyboard-only operation

* Interfaces that are commonly used by screen readers

* Keys that are tactilely discernible and do not activate just by touching them
* Industry-standard devices for ports and connectors

¢ The attachment of alternative input and output devices

IBM and accessibility

See the IBM Accessibility Center at jhttp:/ /www.ibm.com/able/| for more
information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2007, 2008

71

http://www.ibm.com/able/

72 Cell/B.E.Performance Tools Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2007, 2008 73

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N

Rochester, MN 55901

US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

74 Cell/B.E.Performance Tools Reference

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

alphaWorks
BladeCenter
developerWorks

IBM

Passport Advantage
POWER

Power PC®

PowerPC

PowerPC Architecture™

Cell Broadband Engine and Cell BE are trademarks of Sony Computer
Entertainment, Inc., in the United States, other countries, or both and is used under
license therefrom.

Intel®, MMX, and Pentium® are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft®, Windows®, and Windows NT® are trademarks of Microsoft Corporation
in the United States, other countries, or both.

UNIX? is a registered trademark of The Open Group in the United States and
other countries.

Java" and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Red Hat, the Red Hat “Shadow Man” logo, and all Red Hat-based trademarks and

logos are trademarks or registered trademarks of Red Hat, Inc., in the United
States and other countries.

Notices 75

XDR is a trademark of Rambus Inc. in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of
others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following
terms and conditions.

Personal Use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative works of these publications, or any
portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-1S" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

76 Cell/B.E.Performance Tools Reference

Glossary

ABI. Application Binary Interface. This is the standard
that a program follows to ensure that code generated
by different compilers (and perhaps linking with
various, third-party libraries) run correctly on Cell/B.E..
The ABI defines data types, register use, calling
conventions and object formats.

ALF. Accelerated Library Framework. This an API that
provides a set of services to help programmers solving
data parallel problems on a hybrid system. ALF
supports the multiple-program-multiple-data (MPMD)
programming style where multiple programs can be
scheduled to run on multiple accelerator elements at
the same time. ALF offers programmers an interface to
partition data across a set of parallel processes without
requiring architecturally-dependent code.

API. Application Program Interface.

atomic operation. A set of operations, such as
read-write, that are performed as an uninterrupted unit.

Auto-SIMDize. To automatically transform scaler code
to vector code.

Barcelona Supercomputing Center. Spanish National
Supercomputing Center, supporting IBM BladeCenter
servers and Linux on Cell/B.E.

BE. Broadband Engine.
Broadband Engine. See CBEA.
BSC. See Barcelona Supercomputing Center.

C++. C++ is an object-orientated programming
language, derived from C.

cache. High-speed memory close to a processor. A
cache usually contains recently-accessed data or
instructions, but certain cache-control instructions can
lock, evict, or otherwise modify the caching of data or
instructions.

call stub. A small piece of code used as a link to other
code which is not immediately accessible.

Cell BE processor. The Cell BE processor is a
multi-core broadband processor based on IBM’s Power
Architecture.

CBEA. Cell Broadband Engine Architecture. A new
architecture that extends the 64-bit PowerPC
Architecture. The CBEA and the Cell Broadband Engine
are the result of a collaboration between Sony, Toshiba,
and IBM, known as STI, formally started in early 2001.

Cell Broadband Engine processor. See Cell BE.

© Copyright IBM Corp. 2007, 2008

code section. A self-contained area of code, in
particular one which may be used in an overlay
segment.

coherence. Refers to memory and cache coherence.
The correct ordering of stores to a memory address,
and the enforcement of any required cache writebacks
during accesses to that memory address. Cache
coherence is implemented by a hardware snoop (or
inquire) method, which compares the memory
addresses of a load request with all cached copies of
the data at that address. If a cache contains a modified
copy of the requested data, the modified data is written
back to memory before the pending load request is
serviced.

compiler. A programme that translates a high-level
programming language, such as C++, into executable
code.

computational kernel. Part of the accelerator code that
does stateless computation task on one piece of input
data and generates corresponding output results.

compute task. An accelerator execution image that
consists of a compute kernel linked with the
accelerated library framework accelerator runtime
library.

CPC. A tool for setting up and using the hardware
performance counters in the Cell BE processor.

CPI. Cycles per instruction. Average number of clock
cycles taken to perform one CPU instruction.

CPL. Common Public License.

cycle. Unless otherwise specified, one tick of the PPE
clock.

Cycle-accurate simulation. See Performance simulation.

DaCS. The Data Communication and Synchronization
(DaCS) library provides functions that focus on process
management, data movement, data synchronization,
process synchronization, and error handling for
processes within a hybrid system.

DaCS Element. A general or special purpose
processing element in a topology. This refers
specifically to the physical unit in the topology. A DE
can serve as a Host or an Accelerator.

DE. See DaCS element.

DMA. Direct Memory Access. A technique for using a
special-purpose controller to generate the source and
destination addresses for a memory or I/O transfer.

77

DMA command. A type of MFC command that
transfers or controls the transfer of a memory location
containing data or instructions. See MFC.

DMA list. A sequence of transfer elements (or list
entries) that, together with an initiating DMA-list
command, specify a sequence of DMA transfers
between a single area of LS and discontinuous areas in
main storage. Such lists are stored in an SPE’s LS, and
the sequence of transfers is initiated with a DMA-list
command such as getl or putl. DMA-list commands
can only be issued by programs running on an SPE,
but the PPE or other devices can create and store the
lists in an SPE’s LS. DMA lists can be used to
implement scatter-gather functions between main
storage and the LS.

dual-issue. Issuing two instructions at once, under
certain conditions. See fefch group.

EA. See Effective address.
ECC. Error-Correcting Code.

effective address. An address generated or used by a
program to reference memory. A memory-management
unit translates an effective address (EA) to a virtual
address (VA), which it then translates to a real address
(RA) that accesses real (physical) memory. The
maximum size of the effective address space is 2%
bytes.

ELE. Executable and Linking Format. The standard
object format for many UNIX operating systems,
including Linux. Originally defined by AT®&T and
placed in public domain. Compilers generate ELF files.
Linkers link to files with ELF files in libraries. Systems
run ELF files.

elfspe. The SPE that allows an SPE program to run
directly from a Linux command prompt without
needing a PPE application to create an SPE thread and
wait for it to complete.

ext3. Extended file system 3. One of the file system
options available for Linux partitions.

FDPR-Pro. Feedback Directed Program Restructuring.
A feedback-based post-link optimization tool.

Fedora. Fedora is an operating system built from open
source and free software. Fedora is free for anyone to
use, modify, or distribute. For more information about
Fedora and the Fedora Project, see the following Web
site: |http:/ /fedoraproject.org /|

fence. An option for a barrier ordering command that
causes the processor to wait for completion of all MFC
commands before starting any commands queued after
the fence command. It does not apply to these
immediate commands: getl1lar, putllc, and putlluc.

FFT. Fast Fourier Transform.

78 Cell/B.E.Performance Tools Reference

firmware. A set of instructions contained in ROM
usually used to enable peripheral devices at boot.

FSE. Free Software Foundation. Organization
promoting the use of open-source software such as
Linux.

FSS. IBM Full-System Simulator. IBM’s tool which
simulates the cell processor environment on other host
computers.

GCC. GNU C compiler

GDB. GNU application debugger. A modified version
of gdb, ppu-gdb, can be used to debug a Cell Broadband
Engine program. The PPE component runs first and
uses system calls, hidden by the SPU programming
library, to move the SPU component of the Cell
Broadband Engine program into the local store of the
SPU and start it running. A modified version of gdb,
spu-gdb, can be used to debug code executing on SPEs.

GNU. GNU is Not Unix. A project to develop free
Unix-like operating systems such as Linux.

GPL. GNU General Public License. Guarantees
freedom to share, change and distribute free software.

graph structure. A program design in which each
child segment is linked to one or more parent
segments.

group. A group construct specifies a collection of
DaCS DEs and processes in a system.

guarded. Prevented from responding to speculative
loads and instruction fetches. The operating system
typically implements guarding, for example, on all I/O
devices.

GUI Graphical User Interface. User interface for
interacting with a computer which employs graphical
images and widgets in addition to text to represent the
information and actions available to the user. Usually
the actions are performed through direct manipulation
of the graphical elements.

handle. A handle is an abstraction of a data object;
usually a pointer to a structure.

host. A general purpose processing element in a
hybrid system. A host can have multiple accelerators
attached to it. This is often referred to as the master
node in a cluster collective.

HTTP. Hypertext Transfer Protocol. A method used to
transfer or convey information on the World Wide Web.

Hybrid. A module comprised of two Cell BE cards
connected via an AMD Opteron processor.

IDE. Integrated Development Environment. Integrates
the Cell/B.E. GNU tool chain, compilers, the
Full-System Simulator, and other development

http://fedoraproject.org/

components to provide a comprehensive, Eclipse-based
development platform that simplifies Cell /B.E.
development.

IDL. Interface definition language. Not the same as
CORBA IDL

ILAR. IBM International License Agreement for early
release of programs.

initrd. A command file read at boot

interrupt. A change in machine state in response to an
exception. See exception.

intrinsic. A C-language command, in the form of a
function call, that is a convenient substitute for one or
more inline assembly-language instructions. Intrinsics
make the underlying ISA accessible from the C and
C++ programming languages.

ISO image. Commonly a disk image which can be
burnt to CD. Technically it is a disk image of and ISO
9660 file system.

K&R programming. A reference to a well-known
book on programming written by Dennis Kernighan
and Brian Ritchie.

kernel. The core of an operating which provides
services for other parts of the operating system and
provides multitasking. In Linux or UNIX operating
system, the kernel can easily be rebuilt to incorporate
enhancements which then become operating-system
wide.

L1. Level-1 cache memory. The closest cache to a
processor, measured in access time.

L2. Level-2 cache memory. The second-closest cache to
a processor, measured in access time. A L2 cache is
typically larger than a L1 cache.

LA. Local address. A local store address of a DMA list.

It is used as a parameter in a MFC command.

latency. The time between when a function (or
instruction) is called and when it returns. Programmers
often optimize code so that functions return as quickly
as possible; this is referred to as the low-latency
approach to optimization. Low-latency designs often
leave the processor data-starved, and performance can
suffer.

LGPL. Lesser General Public License. Similar to the
GPL, but does less to protect the user’s freedom.

libspe. A SPU-thread runtime management library.
list element. Same as transfer element. See DMA list.

Inop. A NOP (no-operation instruction) in a SPU’s
odd pipeline. It can be inserted in code to align for
dual issue of subsequent instructions.

loop unrolling. A programming optimization that
increases the step of a loop, and duplicates the
expressions within a loop to reflect the increase in the
step. This can improve instruction scheduling and
memory access time.

LS. See local store.

LSA. Local Store Address. An address in the local
store of a SPU through which programs running in the
SPU, and DMA transfers managed by the MFC, access
the local store.

main memory. See main storage.

main storage. The effective-address (EA) space. It
consists physically of real memory (whatever is
external to the memory-interface controller, including
both volatile and nonvolatile memory), SPU LSs,
memory-mapped registers and arrays, memory-mapped
I/0 devices (all I/O is memory-mapped), and pages of
virtual memory that reside on disk. It does not include
caches or execution-unit register files. See also local
store.

Makefile. A descriptive file used by the makecommand
in which the user specifies: (a) target program or
library, (b) rules about how the target is to be built, (c)
dependencies which, if updated, require that the target
be rebuilt.

mailbox. A queue in a SPE’s MFC for exchanging
32-bit messages between the SPE and the PPE or other
devices. Two mailboxes (the SPU Write Outbound
Mailbox and SPU Write Outbound Interrupt Mailbox)
are provided for sending messages from the SPE. One
mailbox (the SPU Read Inbound Mailbox) is provided
for sending messages to the SPE.

main thread. The main thread of the application. In
many cases, Cell BE architecture programs are
multi-threaded using multiple SPEs running
concurrently. A typical scenario is that the application
consists of a main thread that creates as many SPE
threads as needed and the application organizes them.

Mambo. Pre-release name of the IBM Full-System
Simulator, see FSS

MASS. MASS and MASS/V libraries contain
optimized scalar and vector math library operations.

MEFC. Memory Flow Controller. Part of an SPE which
provides two main functions: it moves data via DMA
between the SPE’s local store (LS) and main storage,
and it synchronizes the SPU with the rest of the
processing units in the system.

MEFC proxy commands. MFC commands issued using
the MMIO interface.

Glossary 79

MPMD. Multiple Program Multiple Data. Parallel
programming model with several distinct executable
programs operating on different sets of data.

MT. See multithreading.

multithreading. Simultaneous execution of more than
one program thread. It is implemented by sharing one
software process and one set of execution resources but
duplicating the architectural state (registers, program
counter, flags and associated items) of each thread.

NaN. Not-a-Number. A special string of bits encoded
according to the IEEE 754 Floating-Point Standard. A
NaN is the proper result for certain arithmetic
operations; for example, zero divided by zero = NaN.
There are two types of NaNs, quiet NaNs and signaling
NaNs. Signaling NaNs raise a floating-point exception
when they are generated.

netboot. Command to boot a device from another on
the same network. Requires a TFTP server.

node. A node is a functional unit in the system
topology, consisting of one host together with all the
accelerators connected as children in the topology (this
includes any children of accelerators).

NUMA. Non-uniform memory access. In a
multiprocessing system such as the Cell/B.E., memory
is configured so that it can be shared locally, thus
giving performance benefits.

Oprofile. A tool for profiling user and kernel level
code. It uses the hardware performance counters to
sample the program counter every N events.

overlay region. An area of storage, with a fixed
address range, into which overlay segments are loaded.
A region only contains one segment at any time.

overlay. Code that is dynamically loaded and
executed by a running SPU program.

page table. A table that maps virtual addresses (VAs)
to real addresses (RA) and contains related protection
parameters and other information about memory
locations.

parent. The parent of a DE is the DE that resides
immediately above it in the topology tree.

PDFE. Portable document format.

Performance simulation. Simulation by the IBM Full
System Simulator for the Cell Broadband Engine in
which both the functional behavior of operations and
the time required to perform the operations is
simulated. Also called cycle-accurate simulation.

PERL. Practical extraction and reporting language. A
scripting programming language.

80 Cell/B.E.Performance Tools Reference

pipelining. A technique that breaks operations, such
as instruction processing or bus transactions, into
smaller stages so that a subsequent stage in the
pipeline can begin before the previous stage has
completed.

plugin. Code that is dynamically loaded and executed
by running an SPU program. Plugins facilitate code
overlays.

PPC-64. 64 bit implementation of the PowerPC
Architecture.

PPC. See Power PC.

PPE. PowerPC Processor Element. The
general-purpose processor in the Cell.

PPSS. PowerPC Processor Storage Subsystem. Part of
the PPE. It operates at half the frequency of the PPU
and includes an L2 cache and a Bus Interface Unit
(BIU).

PPU. PowerPC Processor Unit. The part of the PPE
that includes the execution units, memory-management
unit, and L1 cache.

program section. See code section.

proxy. Allows many network devices to connect to the
internet using a single IP address. Usually a single
server, often acting as a firewall, connects to the
internet behind which other network devices connect
using the IP address of that server.

region. See overlay region.

root segment. Code that is always in storage when a
SPU program runs. The root segment contains overlay
control sections and may also contain code sections and
data areas.

RPM. Originally an acronym for Red Hat Package
Manager, and RPM file is a packaging format for one
or more files used by many Linux systems when
installing software programs.

Sandbox. Safe place for running programs or script
without affecting other users or programs.

SDK. Software development toolkit for Multicore
Acceleration. A complete package of tools for
application development.

section. See code section.
segment. See overlay segment and root segment.

SFP. SPU Floating-Point Unit. This handles
single-precision and double-precision floating-point
operations.

signal. Information sent on a signal-notification
channel. These channels are inbound registers (to a

SPE). They can be used by the PPE or other processor
to send information to a SPE. Each SPE has two 32-bit
signal-notification registers, each of which has a
corresponding memory-mapped I/O (MMIO) register
into which the signal-notification data is written by the
sending processor. Unlike mailboxes, they can be
configured for either one-to-one or many-to-one
signalling. These signals are unrelated to UNIX signals.
See channel and mailbox.

signal notification. See signal.

SIMD. Single Instruction Multiple Data. Processing in
which a single instruction operates on multiple data
elements that make up a vector data-type. Also known
as vector processing. This style of programming
implements data-level parallelism.

SIMDize. To transform scaler code to vector code.

SMP. Symmetric Multiprocessing. This is a
multiprocessor computer architecture where two or
more identical processors are connected to a single
shared main memory.

SPE. Synergistic Processor Element. Extends the
PowerPC 64 architecture by acting as cooperative
offload processors (synergistic processors), with the
direct memory access (DMA) and synchronization
mechanisms to communicate with them (memory flow
control), and with enhancements for real-time
management. There are 8 SPEs on each cell processor.

SPE thread. A thread scheduled and run on a SPE. A
program has one or more SPE threads. Each such
thread has its own SPU local store (LS), 128 x 128-bit
register file, program counter, and MFC Command
Queues, and it can communicate with other execution
units (or with effective-address memory through the
MEC channel interface).

specific intrinsic. A type of C and C++ language
extension that maps one-to-one with a single SPU
assembly instruction. All SPU specific intrinsics are
named by prefacing the SPU assembly instruction with
si_.

splat. To replicate, as when a single scalar value is
replicated across all elements of an SIMD vector.

SPMD. Single Program Multiple Data. A common
style of parallel computing. All processes use the same
program, but each has its own data.

SPU. Synergistic Processor Unit. The part of an SPE
that executes instructions from its local store (LS).

spulet. 1) A standalone SPU program that is managed
by a PPE executive. 2) A programming model that
allows legacy C programs to be compiled and run on
an SPE directly from the Linux command prompt.

stub. See methodstub.

synchronization. The order in which storage accesses
are performed.

System X. This is a project-neutral description of the
supervising system for a node.

tag group. A group of DMA commands. Each DMA
command is tagged with a 5-bit tag group identifier.
Software can use this identifier to check or wait on the
completion of all queued commands in one or more tag
groups. All DMA commands except getllar, putlic,
and putlluc are associated with a tag group.

Tcl. Tool Command Language. An interpreted script
language used to develop GUISs, application prototypes,
Common Gateway Interface (CGI) scripts, and other
scripts. Used as the command language for the Full
System Simulator.

TFTP. Trivial File Transfer Protocol. Similar to, but
simpler than the Transfer Protocol (FTP) but less
capable. Uses UDP as its transport mechanism.

thread. A sequence of instructions executed within the
global context (shared memory space and other global
resources) of a process that has created (spawned) the
thread. Multiple threads (including multiple instances
of the same sequence of instructions) can run
simultaneously if each thread has its own architectural
state (registers, program counter, flags, and other
program-visible state). Each SPE can support only a
single thread at any one time. Multiple SPEs can
simultaneously support multiple threads. The PPE
supports two threads at any one time, without the need
for software to create the threads. It does this by
duplicating the architectural state. A thread is typically
created by the pthreads library.

TLB. Translation Lookaside Buffer. An on-chip cache
that translates virtual addresses (VAs) to real addresses
(RAs). A TLB caches page-table entries for the most
recently accessed pages, thereby eliminating the
necessity to access the page table from memory during
load/store operations.

tree structure. A program design in which each child
segment is linked to a single parent segment.

TS. The transfer size parameter in an MFC command.

UDP. User Datagram Protocol. Transports data as a
connectionless protocol, i.e. without acknowledgement
or receipt. Fast but fragile.

user mode. The mode in which problem state software
runs.

vector. An instruction operand containing a set of data
elements packed into a one-dimensional array. The
elements can be fixed-point or floating-point values.
Most Vector/SIMD Multimedia Extension and SPU
SIMD instructions operate on vector operands. Vectors
are also called SIMD operands or packed operands.

Glossary 81

virtual memory. The address space created using the
memory management facilities of a processor.

virtual storage. See virtual memory.
VMA. Virtual memory address. See virtual memory.

work block. A basic unit of data to be managed by
the framework. It consists of one piece of the
partitioned data, the corresponding output buffer, and
related parameters. A work block is associated with a
task. A task can have as many work blocks as
necessary.

workload. A set of code samples in the SDK that
characterizes the performance of the architecture,
algorithms, libraries, tools, and compilers.

work queue. An internal data structure of the
accelerated library framework that holds the lists of
work blocks to be processed by the active instances of
the compute task.

X86. Generic name for Intel-based processors.

XDR. Rambus Extreme Data Rate DRAM memory
technology.

XLC. The IBM optimizing C/C++ compiler.

yaboot. Linux utility which is a boot loader for
PowerPC-based hardware.

82 Cell/B.E.Performance Tools Reference

Index
C

cell-perf-counter 27
compilation 5

compiling
PPE code 6
SPE code 5
CPC 48

displaying report 49

D

DaCS for Hybrid 29
documentation vi, 69
dynamic trace 11

E

event class 14
events 13

F

FDPR-Pro 34, 53, 54
FFT16M 45

H

hybrid 29, 34
requirements 29

hybrid tools
description 31

IDE
running fdprpro 23
interval class 14

L

languages
ADA v
Assembler v
Fortran v
libraries
cell-perf-counter 27
OProfile 25

M

Makefile 45

(0

Oprofile
collecting data 50
daemonrc file 50

© Copyright IBM Corp. 2007, 2008

Oprofile (continued)
SPU profiling restrictions 25
SPU report anomalies 26
OProfile 25
displaying report 51
hybrid 36
oreport tool 25

P

PDT
API 13
collecting trace data 59
configuring 9
directories 4
enabling tracing 5
example 15
hybrid 39
installation 15
introduction 1
kernel module 4
parameter definitions 11
profiling interface 11
restrictions 16
running your program 7
troubleshooting 65
usage 5
PDTR
hybrid 42
PERF_TOOLS_USR_ENV 30
perfToolHostSetup 30
perfToolUsrEnv 30
programming languages
supported v

S

script
perfToolHostSetup 30
perfToolUsrEnv 30
SDK
demos bundle 45
package download 45
SDK documentation vi, 69
SPE profiling 8
support v
supported platforms v

T

TA 2

trace analyzer 2
trace data 59
trace facility 13
trace processing 2
tracing 2

tracing API 10
trademarks 75

U

user-defined events 11

V

Visual Performance Analyzer 2

visualization 3

VPA 2
displaying CPC report 49
displaying OProfile report 51
downloading 49

83

84 Cell/B.E.Performance Tools Reference

Printed in USA

SC34-2565-00

	Contents
	Preface
	About this publication
	Supported platforms
	Supported languages
	Beta-level (unsupported) environments
	Getting support
	Related documentation

	Chapter 1. Cell Broadband Engine Performance Debugging Tool (PDT)
	Introduction
	Components high level description
	Tracing facility
	Trace processing
	Visualization

	PDT tracing-facility package directory structure
	Configuring the PDT kernel module (Red Hat Enterprise Linux (RHEL) 5.2 only)
	PDT example usage

	Enabling the PDT tracing facility for a new application
	Compilation and application building
	Compiling SPE code
	Compiling PPE code

	Running a program with trace-enabled PDT libraries
	Running a program with SPE profiling

	Configuring the PDT for an application run
	Using the tracing API
	Essential definitions
	Application programmer API
	User-defined events
	Dynamic trace control
	Generic profiling interface with user defined payload

	Library developer API
	Trace facility control
	Events recording
	Define event and interval class

	Installing and using the PDT trace facility on the x86_64 (Opteron)
	Using the PDT on Hybrid-x86 example

	PDT Restrictions
	Using the PDTR tool (pdtr command)

	Chapter 2. Feedback Directed Program Restructuring (FDPR-Pro)
	Introduction
	Input files
	Instrumentation and profiling
	Optimizations
	Instrumentation and optimization options
	Profiling SPE executable files
	Processing PPE/SPE executable files
	Integrated mode
	Standalone mode

	Human-readable output
	Running fdprpro from the IDE
	Cross-development with FDPR-Pro

	Chapter 3. OProfile
	SPU profiling restrictions
	SPU report anomalies

	Chapter 4. Cell-perf-counter tool
	Chapter 5. Hybrid performance tools
	Overview
	Requirements
	Setting up and configuring the performance tool scripts
	Hybrid tools description
	CPC hybrid support
	FDPR-Pro hybrid support
	OProfile hybrid support
	PDT support for hybrid
	PDTR support for Hybrid

	Chapter 6. Performance tools example
	FFT16M sample application
	Preparing and building for profiling
	Creating and working with profile data
	Collecting data with CPC
	Displaying the CPC report in VPA
	Collecting data with OProfile
	Displaying the OProfile report in VPA
	Using FDPR-Pro to gather frequency information
	Analyzing and displaying FDPR-Pro frequency information in VPA
	Creating and working with trace data
	Collecting trace data with PDT
	Importing PDT data into VPA

	Appendix A. PDT troubleshooting
	Appendix B. Related documentation
	Appendix C. Accessibility features
	Notices
	Trademarks
	Terms and conditions

	Glossary
	Index

