
Software Development Kit for Multicore Acceleration

Version 3.1

IDE

Tutorial and User’s Guide

SC34-2561-00

���

Software Development Kit for Multicore Acceleration

Version 3.1

IDE

Tutorial and User’s Guide

SC34-2561-00

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 153.

Edition notice

This edition applies to version 3, release 1, modification 0, of the IBM Software Development Kit for Multicore

Acceleration (Product number 5724-S84) and to all subsequent releases and modifications until otherwise indicated

in new editions.

© Copyright International Business Machines Corporation 2006, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this publication v

How to send your comments v

Part 1. Getting started 1

Chapter 1. Overview of the IBM SDK for

Multicore Acceleration Integrated

Development Environment 3

Chapter 2. Supported operating

environments 5

Chapter 3. Installing IDE 7

Troubleshooting: 32–bit IES Eclipse fails to load on

64–bit Fedora 9 9

Troubleshooting: 32–bit IES Eclipse fails to load on

x86 with RHEL 5.2 10

Chapter 4. Uninstalling IDE 11

Part 2. Using IDE 13

Chapter 5. Creating a Cell/B.E.

environment 15

Chapter 6. Running IDE on Cell/B.E.

systems 17

Chapter 7. Running IDE on Power-PC

systems 21

Chapter 8. Using the CDT XLC error

parser 23

Chapter 9. Configuring public

key-based authentication using

OpenSSH 25

Chapter 10. Troubleshooting and

work-arounds 27

Part 3. IDE tutorial 29

Chapter 11. IDE tutorial 31

Getting started - open Eclipse 33

Getting started - select C/C++ Perspective 34

SPU project - create SPU project 35

SPU project - select the C Project Wizard 36

SPU project - enter the project name and define the

project type 37

SPU project - configure SPU Project 38

SPU project - add directory the SPU compiler

include paths list 39

SPU project - add the directory path 40

SPU project - create a new source file 41

SPU project - enter the new source file name . . . 42

SPU project - edit the source file 43

SPU project - automatically build the project . . . 44

PPU project - create a PPU executable project . . . 45

PPU project - create the PPU project 46

PPU project - reference the SPU project - step 1 . . 47

PPU project - reference the SPU project - step 2 . . 48

PPU project - finish creating the PPU project . . . 49

PPU project - configure the PPU project 50

PPU project - select the C/C++ build options . . . 51

PPU project - view the Manage Configurations

window 52

PPU project - add the libspe2 library to the library

linker list - step 1 53

PPU project - add the libspe2 library to the library

linker list - step 2 54

PPU project - add the SPU executable as an embed

SPU input - step 1 55

PPU project - add the SPU executable as an embed

SPU input - step 2 56

PPU project - add the SPU executable as an embed

SPU input - step 3 57

PPU project - configure additional settings 58

PPU project - create another new source file . . . 59

PPU project - enter the name for the new source file 60

PPU project - edit the source code file 61

Cell/B.E. simulator - create the local Cell/B.E.

simulator 63

Cell/B.E. simulator - configure the simulator . . . 64

Cell/B.E. simulator - configure the simulator

options 65

Cell/B.E. simulator - start the simulator - step 1 . . 66

Cell/B.E. simulator - start the simulator - step 2 . . 67

Create an application launch configuration 68

Application launcher configuration - create a new

C/C++ Cell/B.E. target application configuration . . 69

Application launcher configuration - modify the

debug configuration 70

Application launcher configuration - select C/C++

application 71

Application launcher configuration - select target

environment 72

Application launcher configuration - configure the

Launch tab 73

Application launcher configuration - specify

resources to synchronize 74

Application launcher configuration - select debugger

and launch the debug configuration 75

Debug the application 76

© Copyright IBM Corp. 2006, 2008 iii

Debug the application - switch to the C/C++

perspective 77

Dynamic profiling tool 78

Dynamic profiling tool - change SPU modes in the

simulator window 79

Dynamic profiling tool - change the SPEs to pipeline

mode 80

Dynamic profiling tool - launch the PPU application 81

Dynamic profiling tool - view the results of the

dynamic performance analysis 82

SPU timing tool - static timing analysis 83

SPU timing tool - view the SPU timing output . . 84

Simulator console - toggle the simulator console

view 85

Simulator console - select the simulator TCL console 86

Simulator console - view the simulator’s TCL

console 87

Simulator console - use the simulator’s Linux

console 88

ALF API wizard 89

ALF API wizard - start the ALF IDE wizard . . . 90

ALF API wizard - enter a project name 91

ALF API wizard - change general parameters . . . 92

ALF API wizard - add ALF buffers 93

ALF API wizard - add the first buffer 94

ALF API wizard - add a second buffer 95

ALF API wizard - add the third buffer 96

ALF API wizard - finish using the ALF IDE wizard 97

ALF API wizard - ALF IDE wizard complete . . . 98

ALF API wizard - Create new launch configuration 99

ALF API wizard - add a new upload rule 100

ALF API wizard - create a new upload rule - step 2 101

ALF API wizard - select the shared library .so file 102

ALF API wizard - launch an ALF application . . . 103

IDE PDT plugin 104

IDE PDT plugin - set up the C Linker flag 105

IDE PDT plugin - set up the C compiler flag . . . 106

IDE PDT plugin - rebuild the project with PDT

flags 107

IDE PDT plugin - create a PDT configuration file 108

IDE PDT plugin - open the wizard 109

IDE PDT plugin - enter a file name 110

IDE PDT plugin - select event groups 111

IDE PDT plugin - select sub-events 112

IDE PDT plugin - set colors for events 113

IDE PDT plugin - modify the XML configuration

file 114

IDE PDT plugin - using the Profile Launcher . . . 115

IDE PDT plugin - launch the application with PDT

support 116

IDE PDT plugin - check generated trace files . . . 117

View the Eclipse preferences window 118

View the IDE environment preferences 119

Tutorial finished! 120

Part 4. ALF for IDE programmer’s

guide 121

Chapter 12. ALF for IDE overview . . . 123

Chapter 13. Data distribution overview 125

Practice with data distribution directives 127

Chapter 14. ALF IDE wizard overview 131

Chapter 15. Programming tips using

the ALF IDE wizard 133

Chapter 16. Programming with ALF

IDE wizard 135

Using the ALF IDE wizard to create an ALF project 136

ALF IDE wizard parameters 137

Using user-defined types 140

Example: Matrix addition 140

Chapter 17. Platform-specific

constraints for ALF IDE Wizard on

Cell/B.E. architecture 143

Data distribution limitations 143

Data partitioning limitations 143

Local memory constraints for SPE 144

User-defined type size limitations 146

Part 5. Appendixes 147

Appendix A. Related documentation 149

Appendix B. Accessibility features 151

Notices 153

Trademarks 155

Terms and conditions 155

Index 157

iv IDE Tutorial and User’s Guide Draft

About this publication

This publication describes in detail how to use the IBM Software Development Kit

for Multicore Acceleration Integrated Development Environment for Cell

Broadband Engine™ (IDE).

Who should use this book

The target audience for this document is application programmers using the IBM

Software Development Kit for Multicore Acceleration (SDK). You are expected to

have a basic understanding of programming on the Cell Broadband Engine

(Cell/B.E.) platform and common terminology used with the Cell/B.E. platform.

Typographical conventions

The following table explains the typographical conventions used in this document.

 Table 1. Typographical conventions

Typeface Indicates Example

Bold Lowercase commands,

library functions.

void sscal_spu (float *sx,

float sa, int n)

Italics Parameters or variables

whose actual names or

values are to be supplied by

the user. Italics are also used

to introduce new terms.

The following example

shows how a test program,

test_name can be run

Monospace Examples of program code

or command strings.

int main()

Related information

For a list of SDK documentation, see Related documentation.

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information. If you have any comments about this publication, send your

comments using IBM Resource Link™ at http://www.ibm.com/servers/
resourcelink. Click Feedback on the navigation pane. Be sure to include the name

of the book, the form number of the book, and the specific location of the text you

are commenting on (for example, a page number or table number).

© Copyright IBM Corp. 2006, 2008 v

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

vi IDE Tutorial and User’s Guide Draft

Part 1. Getting started

These topics describe what IDE is, the hardware requirements and how to install

IDE.

v Chapter 1, “Overview of the IBM SDK for Multicore Acceleration Integrated

Development Environment,” on page 3

v Chapter 2, “Supported operating environments,” on page 5

v Chapter 3, “Installing IDE,” on page 7

v Chapter 4, “Uninstalling IDE,” on page 11

© Copyright IBM Corp. 2006, 2008 1

2 IDE Tutorial and User’s Guide Draft

Chapter 1. Overview of the IBM SDK for Multicore

Acceleration Integrated Development Environment

The IBM® SDK for Multicore Acceleration Integrated Development Environment

(IDE) is built upon the Eclipse and C Development Tools (CDT) platform.

It integrates the Cell/B.E. GNU tool chain, compilers, IBM Full-System Simulator

(simulator) for the Cell/B.E. processor, and other development components to

provide a comprehensive, user-friendly development platform that simplifies

Cell/B.E. application development. The key features include the following:

v A C/C++ editor that supports syntax highlighting, a customizable template, and

an outline window view for procedures, variables, declarations, and functions

that appear in the source code

v A rich visual interface for the Power Processing Element (PPE), Synergistic

Processing Element (SPE), and the GNU debugger (GDB)

v A seamless integration of simulator into Eclipse

v An automatic builder, performance tools, and several other enhancements

© Copyright IBM Corp. 2006, 2008 3

4 IDE Tutorial and User’s Guide Draft

Chapter 2. Supported operating environments

The following are the prerequisites for using IDE for all operating environments.

Architecture: x86, x86_64, PPC, PPC_64, Cell/B.E.

Operating System: Linux®

Software:

v Cell BE SDK 3.1

v Java™ 1.5 (IBM or Sun.)

Note: The Java™ that comes installed in some Linux® installations (GCJ) is not

sufficient.

© Copyright IBM Corp. 2006, 2008 5

http://alphaworks.ibm.com/tech/cellsw/
http://www-128.ibm.com/developerworks/java/jdk/
http://java.sun.com/javase/downloads/index_jdk5.jsp

6 IDE Tutorial and User’s Guide Draft

Chapter 3. Installing IDE

This topic describes how to install IDE.

If you have installed the SDK and wants to use the optional IES Eclipse IDE

component, install IDE by following these steps:

1. The GCJ JRE installed with Linux distributions is not sufficient for IDE.

Download and install J2SE Version 5.0, SR8 or greater for 32–bit xSeries® from

http://www.ibm.com/developerworks/java/jdk/linux/download.html. SDK

provides an IBM 32-bit JRE 1.5 SR8 that you can install by invoking the

following commands as root (admin):

v yum install ibm-java2-ppc-jre (PowerPc version)

v yum install ibm-java2-i386-jre (i386 version)
2. Configure your environment to use the new JRE.

a. Eclipse uses the Java virtual machine (JVM) to which your Linux PATH

variable points. To find out which version of Java is being used, run the

command:

java -version

If this returns a JVM other and GCJ, you can go to next step.

b. When you start Eclipse, use the -vm command to specify the IBM JVM. For

example:

eclipse -vm /opt/java/jdk1.5.0_08/jre/bin

c. If you want to modify your environment permanently, configure your PATH

variable to reference the IBM JVM. You can modify your PATH variable by

editing the file $HOME/.bash_profile. For example, add this line:

PATH=$HOME/bin:/opt/java/jdk1.5.0_08/jre/bin:$PATH

3. Install the IDE rpm. To install the IDE rpm, log in as root (admin) user and

perform one of the two installation methods:

v Download the rpm from the developerWorks® IDE site. To install it, use the

rpm command:

 > rpm -ivh cellide-3.1.0-[RELEASE_NUM].[ARCHITECTURE].rpm

v If you have the cell-install rpm installed, you can use yum as follows:

 > yum install cellide

This procedure installs an IES Eclipse bundled with CDT 4.0, PTP Remotetools

2.0 and the latest IDE plug-ins into the /opt/cell/ide/eclipse directory.

4. Install the Accelerated Library Framework (ALF) IDE template, Performance

Debugging Tool (PDT) and SPU Timing packages.

a. If you want to use the ALF IDE Wizard, you need to install the ALF IDE

template rpm (alf-ide-template). Make sure you have the SDK’s cell-install

rpm package installed, then invoke the following command:

 > yum install alf-ide-template

b. To enable the PDT feature on IDE, make sure you have the SDK’s

cell-install rpm package installed, then invoke the following command:

yum install pdt

c. To use the SPU Timing feature, make sure you have the SDK’s cell-install

rpm package installed, then invoke the following command:

© Copyright IBM Corp. 2006, 2008 7

http://www.ibm.com/developerworks/java/jdk/linux/download.html
http://www-128.ibm.com/developerworks/power/cell/

yum install cell-spu-timing

What to do next: For more information about IDE, see the Eclipse help topic.

To access IDE help, in Eclipse, click: Help → Help Contents → IDE for Cell

Broadband Engine SDK.

8 IDE Tutorial and User’s Guide Draft

Troubleshooting: 32–bit IES Eclipse fails to load on 64–bit Fedora 9

This occurs because there are no specific 32–bit libraries provided with the Fedora

9 x86_64 version.

Solution:

1. Install the cellide package.

2. Install libcairo 32–bit version:

yum install libcairo.i386

3. Install libXtst 32–bit version:

yum install libXtst.i386

Chapter 3. Installing IDE 9

Troubleshooting: 32–bit IES Eclipse fails to load on x86 with RHEL 5.2

This is a known issue caused by a library called xulrunner. The original installation

of this library in RHEL 5.2 makes 32-bit IES Eclipse to crash. To solve this problem,

remove the original version of xulrunner from your RHEL 5.2 installation:

yum erase xulrunner

10 IDE Tutorial and User’s Guide Draft

Chapter 4. Uninstalling IDE

This topic describes how to uninstall IDE for all platforms.

To uninstall IDE, you must remove the cellide package from the system. You can

do this in many ways, for example:

v As root user, issue the command:

yum erase cellide

v Use any graphical packaging management tool to remove the cellide package

When you remove the cellide package, the following components are deleted:

v IES Eclipse bundled with CDT 4.0 and PTP Remotetools 2.0

v The IDE plug-ins installed in the /opt/cell/ide/eclipse directory

Note: The IDE uninstallation process does not erase any plug-ins or workspaces

located on the user’s space, but it does erase all the contents of

/opt/cell/ide/eclipse and its subdirectories.

© Copyright IBM Corp. 2006, 2008 11

12 IDE Tutorial and User’s Guide Draft

Part 2. Using IDE

These topics describe how to use IDE to run and debug applications.

It describes the following topics:

v Chapter 5, “Creating a Cell/B.E. environment,” on page 15

v Chapter 6, “Running IDE on Cell/B.E. systems,” on page 17

v Chapter 7, “Running IDE on Power-PC systems,” on page 21

v Chapter 8, “Using the CDT XLC error parser,” on page 23

v Chapter 9, “Configuring public key-based authentication using OpenSSH,” on

page 25

v Chapter 10, “Troubleshooting and work-arounds,” on page 27

© Copyright IBM Corp. 2006, 2008 13

14 IDE Tutorial and User’s Guide Draft

Chapter 5. Creating a Cell/B.E. environment

This topic describes the Cell/B.E. environments in which you can run IDE.

You can use IDE to run and debug Cell/B.E. applications in any of the following

types of Cell/B.E. environments:

v Attached Cell/B.E. simulator - Cell/B.E. simulator running on a remote system.

You must manually start the simulator on the remote system. This is different to

the remote Cell/B.E. simulator environment, where IDE starts the simulator on

the remote host.

v Cell/B.E. box - Physical Cell/B.E. system (remote or native Cell/B.E. system

running IDE).

v Local Cell/B.E. simulator - Cell/B.E. simulator running on the native system.

v Remote Cell/B.E. simulator - Cell/B.E. simulator running on a remote system.

IDE starts the remote simulator. This is different to the attached Cell/B.E.

simulator environment, whereby you must start the simulator manually on the

remote host.

Before you can run or debug a Cell/B.E. application, you must create and start a

Cell/B.E. environment as following:

1. Open the Cell Environments view.

2. Right click any of the four available Cell/B.E. machine types, then select

Create.

3. Enter any necessary configuration values, then click Finish.

4. Start the environment. To do this, click the green Start arrow button.

After the Cell/B.E. environment has started, it is ready to be used for Cell/B.E.

application deployment.

More information:

v Running IDE on Cell/B.E. systems

v Running IDE on Power-PC systems

© Copyright IBM Corp. 2006, 2008 15

16 IDE Tutorial and User’s Guide Draft

Chapter 6. Running IDE on Cell/B.E. systems

IDE can be run on a system with a Cell/B.E. processor (as of version 3.0).

The following topics describe how to run IDE on such a system:

v “Managing builder paths for Cell/B.E. systems”

v “Debugging Cell/B.E. applications”

v “Running Cell/B.E. applications” on page 19

Managing builder paths for Cell/B.E. systems

The GNU and XL tool paths are at different locations on a native Cell/B.E. system

than on a ″typical″, non-Cell/B.E. system. IDE’s default paths reflect the default

Cell/B.E. SDK tool paths of a non-Cell/B.E. computer, so these paths must be

corrected. This can be done as follows:

1. After installing IDE, open Eclipse preferences. To do this, click Window →

Preferences.

2. Open the GNU Tools Managed Build Paths preference page: Cell → Managed

Builder Paths → GNU Tools Managed Build Paths.

3. Click Find it! to automatically find the GNU tools location, or click Browse to

manually select the location

4. Do the same for the XL Tools Managed Build Paths preference page

Debugging Cell/B.E. applications

Debugging Cell/B.E. applications while running the IDE on a native Cell/B.E.

machine requires a few changes to the debugger configuration in order to function

properly. Unlike attempting to debug Cell/B.E. applications remotely via SSH,

debugging locally does not require the use of gdbserver. Also, instead of creating a

C/C++ Cell Target Application debug configuration, you can simply create a

C/C++ Local Application configuration (see Figure 1 on page 18).

Note: Other debugger configurations and combinations are possible, only one of

them is described here.

1. Click Run → Debug... to open the debug configuration window.

2. Create a new C/C++ Local Application debug configuration (Figure 1 on page

18).

© Copyright IBM Corp. 2006, 2008 17

After you have created a new C/C++ Local Application launcher, you must

properly configure the Debugger tab (see Figure 2 on page 19):

1. Select the gdb/mi debugger.

2. Change the GDB Debugger to ppu-gdb in order to be able to debug the SPU

parts of the application as well as the PPU part.

3. Change the GDB command set field to Standard (Cell BE).

Figure 1. Creating a new C/C++ Local Application

18 IDE Tutorial and User’s Guide Draft

Running Cell/B.E. applications

To run applications locally on a Cell/B.E. system, you can use either the C/C++

Local Application or the C/C++ Cell Target Application launch configuration.

The C/C++ Cell Target Application launcher was initially designed to allow for

the running/debugging of applications on a Cell/B.E. simulator or system, while

the development of that application was done on a computer without a Cell/B.E.

processor. However, you can use this same launcherto deploy an application

locally if you are running IDE on a system with a Cell/B.E. processor. In order to

accomplish this, you need to create a Cell Box environment (in the Cell

Environments view) with the configuration option Localhost selected (instead of

Remote host being selected). After you have clicked the green arrow to start the

localhost Cell Box, it can then be used as the target environment in the C/C++ Cell

Target Application launcher.

Figure 2. Correctly configured Debugger tab

Chapter 6. Running IDE on Cell/B.E. systems 19

20 IDE Tutorial and User’s Guide Draft

Chapter 7. Running IDE on Power-PC systems

IDE can be run on a Power-PC (PPC) system.

The following topics are worth discussing if you plan to use this platform to run

the IDE:

v “Managing builder paths for a PPC system”

This section discusses any issues that may come up when running the Cell IDE on

a Power-PC (PPC) system.

Managing builder paths for a PPC system

The SDK’s GNU and XL tool paths are at different locations on a PPC-based

system than on systems with Intel® processors. IDE’s default paths reflect the

default Cell/B.E. SDK tool paths of a Intel-based computer, so these paths must be

corrected if you wish to run IDE on PPC. This can be done as follows:

1. After installing IDE, open Eclipse preferences. To do this, click Window →

Preferences.

2. Open the GNU Tools Managed Build Paths preference page: Cell → Managed

Builder Paths → GNU Tools Managed Build Paths.

3. Click Find it! to automatically find the GNU tools location, or click Browse to

manually select the location

4. Do the same for the XL Tools Managed Build Paths preference page

© Copyright IBM Corp. 2006, 2008 21

22 IDE Tutorial and User’s Guide Draft

Chapter 8. Using the CDT XLC error parser

This topic describes how to use the CDT XLC error parser with IDE.

The IDE is integrated with the Cell/B.E. GNU compilers and also with the Cell BE

XL compilers. The error messages printed by these compilers are parsed by the

appropriate error message parser in order to identify the error information and

display it correctly in the graphical user interface. This makes it easier for you to

solve problems that the compilers encountered with your source code.

The GNU C Compiler error message parser comes integrated with CDT. Previous

versions of the CDT did not support XL C/C++ compiler error messages and for

this reason IDE provides its own XLC error parser. However, from version 3.1.2

onwards CDT provides an XL C/C++ error parser, which you can install from the

CDT update site. If you prefer to use this XL C/C++ error parser instead of the

one provided by IDE, you need to follow the following instructions to the install

CDT XLC error parser as it is not installed by default when CDT is installed:

1. Install Java, Eclipse and CDT as described in steps 1 through 4 of the IBM SDK

for Multicore Acceleration IDE Installation Instructions.

Note: The CDT XLC Error Parser is available from CDT version 3.1.2

onwards.

2. Start Eclipse. Make sure you start Eclipse with a user that has write permission

to the Eclipse installation directory.

3. From the menu, select Help → Software Updates → Find and Install...

4. Select Search for new feature to install, then press Next.

5. Click New Remote Site....

6. Enter a name in the Name field that identifies the update site, for example,

CDT Update Site.

7. Enter the following into the URL field

http://download.eclipse.org/tools/cdt/releases/callisto

8. Click OK. The recently created entry appears selected in the Sites to include in

search field.

9. Click Finish and follow the on-screen instructions.

After you have completed the above steps, a CDT XLC Error Parser entry appears

in the Error Parser tab. You can access this tab through any of the following:

v Select Window → Preferences... → C/C++ → Make → New Make Projects

v From the C/C++ Build dialog page of a Managed Make C/C++ project

Properties

v From the C/C++ Make Project dialog page of a Standard Make C/C++ project

Properties

v From the final dialog of the project creation wizard for Managed Make C/C++

and Standard Make C/C++ projects.

From this Error Parser tab, you can deselect the IDE XLC Error Parser and select

the CDT XLC Error Parser.

© Copyright IBM Corp. 2006, 2008 23

24 IDE Tutorial and User’s Guide Draft

Chapter 9. Configuring public key-based authentication using

OpenSSH

The following topics describe how to configure your client and server (as well as

how to configure the IDE’s environments) to use the public key authentication

method.

IDE establishes connections to remote Cell/B.E. environments using Secure Shell

(SSH). Two SSH authentication methods are supported:

v Password-based

v Public key-based

Step 1. Verify the software

First, confirm that OpenSSH is the SSH software installed on the client system.

Public key generation can be different for different implementations of SSH. Use

the ssh-V command to check the version of your SSH software as follows:

> $ ssh -V

OpenSSH_4.3p2, OpenSSL 0.9.8b 04 May 2006

Step 2. Generate a key pair

You must generate a RSA public/private key pair on the client system. The public

key is copied to the remote server that is being connected to, the private key

remains on the client system in a secure location. Use the ssh-keygen command to

generate the key pair as follows:

client$ mkdir ~/.ssh

client$ chmod 700 ~/.ssh

client$ ssh-keygen -q -f ~/.ssh/id_rsa -t rsa

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Step 3. Distribute the key

Next, copy the public key ~/.ssh/id_rsa.pub to the remote server. After the public

key has been copied, you need to append the key’s contents to the file

~/.ssh/authorized_keys:

client$ scp ~/.ssh/id_rsa.pub user@server.example.com:

client$ ssh user@server.example.com

server$ mkdir ~/.ssh

server$ chmod 700 ~/.ssh

server$ cat ~/id_rsa.pub >> ~/.ssh/authorized_keys

server$ chmod 600 ~/.ssh/authorized_keys

server$ rm ~/id_rsa.pub

Step 4. Confirm the functionality

Attempt to connect to the server to confirm that the public key authentication

method is working. If you are using the public key authentication method, you are

asked for the passphrase when you connect:

client$ ssh -o PreferredAuthentications=publickey

user@server.example.edu

Enter passphrase for key ’/home/user/.ssh/id_rsa’:

© Copyright IBM Corp. 2006, 2008 25

Step 5. Configure the Cell/B.E. environment

Finally, you need to configure the Cell/B.E. environment inside the IDE.

Note: Public key authentication can be used on any of the Cell/B.E. target

environment types except for the Local Cell Simulator type.

The following steps explain how to configure your Cell/B.E. Environment:

1. In Eclipse, open the Cell Environments view.

2. Open the cell environment’s configuration window by either creating a new

environment (right click environment type and select Create) or by editing an

existing environment (right click the existing environment and select Edit).

3. Select the option Public key based authentication.

4. Press the Browse button next to the field File with private key, and select the

private key file ~/.ssh/id_rsa.

5. Enter the passphrase that you entered when you created the public/private key

pair.

6. Click Finish and use the green start arrow to start the environment.

26 IDE Tutorial and User’s Guide Draft

Chapter 10. Troubleshooting and work-arounds

This topic describes solutions to problems you can encounter when you use IDE.

The following are known issues with IDE:

v “Using the Java API with the simulator”

v “Reconnecting to the GDB server”

v “Ensuring that the remote launch directory is writable for all users”

v “Configuring the localhost” on page 28

v “Specifying MAC addresses for the local Cell/B.E. simulator” on page 28

Using the Java API with the simulator

There is a known bug with the Cell/B.E. simulator’s capacity to use the Java API

along with the simulator GUI window. To enable the use of the Java API with the

simulator, you must set the option USE_JAVA_API to true:

USE_JAVA_API=true

This parameter can be found in the file parameters.properties, which is located at:

eclipse/plugins/com.ibm.celldt.simulator/com/ibm/celldt/simulator/conf

If the USE_JAVA_API option is set to true, the simulator GUI window cannot be

used.

Reconnecting to the GDB server

If you are debugging a Cell/B.E. application remotely using gdbserver and the

connection to the gdbserver is broken, IDE tries to reconnect automatically.

However, this is not successful even though the gdbserver is still running on the

target system.

If you stop this debug session and try to start a new one, IDE issues an error

because the gdbserver is still occupying the previous configuation port on the

target system and IDE is not able to launch another instance of gdbserver in the

same port unless the debug launcher configuration is modified.

The workaround for this is to kill the gdbserver application on the target system

before you launch another debug session again.

Ensuring that the remote launch directory is writable for all

users

The Cell/B.E. Target Application launcher automatically creates a remote directory

for launching the application. By default, this directory is given by following

macros:

${system_workspace}/${user_workspace}/${project_name}/${timestamp}

If you are sharing the remote (Cell/B.E.) system, make sure that all users can write

to the directory provided by ${system_workspace}.

© Copyright IBM Corp. 2006, 2008 27

The first user that connects to the machine creates ${system_workspace},

subsequent users create their directories inside ${system_workspace}. However, if

${system_workspace} was not created with full write privileges, then the

subsequent users will not be able to launch.

Configuring the localhost

When IDE uses the Cell/B.E. Target Application launcher and Local Cell/B.E.

Simulator, it calls Inet4Address.getLocalHost() several times. In some cases, this

method can fail if your system is not configured correctly. This failure can result in

IDE refusing to create new simulator environments or cause failures or both with

the Cell/B.E. Target Application launcher.

If you encounter this problem, check the /etc/hosts file and ensure that the

following line is present:

127.0.0.1 localhost mymachine

where mymachine is the name of the system as given by the environment variable

$HOSTNAME.

Specifying MAC addresses for the local Cell/B.E. simulator

The local simulator configuration window allows you to choose your own MAC

address. If you decide to specify your own MAC address, the following rules

apply:

v The first number of the address MUST NOT be odd. It MUST be even. It should

be n*4+2 (02, 06, 10, )

– If the first number is odd, then SSH will not connect, even if simulator pings

successfully

– If the first digit is not n*4+2, then it does not conform to RFC
v It is recommended that the second and third numbers are 00

v The recommended MAC addresses are: 02-00-00-00-00-00, 02-00-00-00-00-01,

02-00-00-00-00-02, 02-00-00-00-00-03

28 IDE Tutorial and User’s Guide Draft

Part 3. IDE tutorial

© Copyright IBM Corp. 2006, 2008 29

30 IDE Tutorial and User’s Guide Draft

Chapter 11. IDE tutorial

This introductory tutorial explores IDE and provides click-by-click lessons on how

to use many of the main features of the IDE.

Purpose of this tutorial

In this tutorial you will learn how to:

v Create, build, and run PPU/SPU managed make projects

v Use the local Cell/B.E. simulator environment

v Use the performance analysis tools (static and dynamic)

v Configure and use the C/C++ Cell Target Application launcher to run and

debug your Cell/B.E. applications

v Use the ALF IDE wizard by means of an example usage scenario

v Use the IDE PDT to generate trace profiles

Preparation

Before you start with the tutorial you must prepare your system. You must have

IDE installed and running on the computer you want to use for the tutorial. For

information about how to install IDE, refer to Chapter 3, “Installing IDE,” on page

7.

Learning time

You should allow two and a half hours to complete the tutorial.

Conventions

The following conventions are used in the task descriptions:

v Select File → New means ″Select item ’New’ from the ’File’ menu.″

v Click OK means ″click the OK button″.

Table of contents

Click one of the following sections to jump to a particular section of the tutorial, or

click here to start at the beginning.

You can return to the table of contents at any time by clicking the ″Parent topic″

link in the tutorial.

 1. “SPU project - create SPU project” on page 35

 2. “PPU project - create the PPU project” on page 46

 3. “Cell/B.E. simulator - create the local Cell/B.E. simulator” on page 63

 4. “Create an application launch configuration” on page 68

 5. “Debug the application” on page 76

 6. Dynamic/static performance analysis

 7. “Simulator console - toggle the simulator console view” on page 85

 8. Accelerated Library Framework API Wizard

 9. “View the Eclipse preferences window” on page 118

© Copyright IBM Corp. 2006, 2008 31

10. “View the IDE environment preferences” on page 119

11. “IDE PDT plugin” on page 104

32 IDE Tutorial and User’s Guide Draft

Getting started - open Eclipse

With CDT and IDE installed into your eclipse directory, open Eclipse and switch to

the C/C++ perspective. To do this click Window → Open Perspective → Other...

Chapter 11. IDE tutorial 33

Getting started - select C/C++ Perspective

Select C/C++, then click OK.

34 IDE Tutorial and User’s Guide Draft

SPU project - create SPU project

Objectives: After you have completed this part of the tutorial you will know how

to:

v Create and configure an SPU project

v Add the directory that contains the profile.h header file to the list of the

compiler’s include paths so that you can use the dynamic performance analysis

tool

v Create a C source file

v Automatically build the project

Create a new C project. Click File → New → Project.

Chapter 11. IDE tutorial 35

SPU project - select the C Project Wizard

The New Project wizard is displayed.

1. Expand the section C.

2. Select C Project.

3. Click Next.

36 IDE Tutorial and User’s Guide Draft

SPU project - enter the project name and define the project type

For Project name, enter SPU. You can select the appropriate Project Type (Cell PPU

Executable, Cell SPU Static Library, and so on) for the project you are creating.

When you select a project type, you see the default Configurations available for

that project type. Later in the tutorial you will learn how to create new build

configurations, as well as how to modify the existing built-in configurations’

settings.

1. For Project Type, select Cell SPU Executable.

2. Click Finish.

Chapter 11. IDE tutorial 37

SPU project - configure SPU Project

In the C/C++ Projects view:

1. Right click the SPU project.

2. Select Properties.

38 IDE Tutorial and User’s Guide Draft

SPU project - add directory the SPU compiler include paths list

You need to add the directory that contains the profile.h header file to the list of

the compiler’s include paths so that you can use the dynamic performance analysis

tool.

1. Click C/C++ Build in the left pane.

2. Under SPU GNU C Compiler with Debug Options, select Directories.

3. In the Include Paths pane on the right, click the Add button.

Chapter 11. IDE tutorial 39

SPU project - add the directory path

1. Enter /opt/ibm/systemsim-cell/include/callthru/spu

2. Click OK twice to return to the C/C++ Perspective.

40 IDE Tutorial and User’s Guide Draft

SPU project - create a new source file

Create a C source file. Click File → New → Source File.

Chapter 11. IDE tutorial 41

SPU project - enter the new source file name

1. In Source File, enter spu.c.

2. Click Finish.

42 IDE Tutorial and User’s Guide Draft

SPU project - edit the source file

A new editor is displayed so you can enter your source code. Copy and paste the

following source code into your editor (you will uncomment the commented lines

later):

#include <stdio.h>

#include <profile.h>

int main(unsigned long long id)

{

 //prof_clear();

 //prof_start();

 printf("Hello Cell (0x%llx)\n", id);

 //prof_stop();

 return 0;

}

Chapter 11. IDE tutorial 43

SPU project - automatically build the project

Save the source file (Control + S). The project is automatically built.

The build output is displayed in the Console view, and new resources, such as

binaries and includes, are displayed in the C/C++ Projects view.

44 IDE Tutorial and User’s Guide Draft

PPU project - create a PPU executable project

Objectives: After you have completed this part of the tutorial you will know how

to:

v Create a PPU project

v Configure the PPU project

v Add the SPU executable as an embed SPU input

Now create a PPU executable project that uses the Embed SPU tool in your SPU

project.

Click File → New → C Project.

Chapter 11. IDE tutorial 45

PPU project - create the PPU project

Create the PPU project:

1. For Project name, enter PPU.

2. For Project Type, select Cell PPU Executable

3. Click Next.

46 IDE Tutorial and User’s Guide Draft

PPU project - reference the SPU project - step 1

The project SPU that you created earlier is listed. Because you will embed the SPU

project’s executable into the PPU project, you need to reference it.

Click Advanced settings.

Chapter 11. IDE tutorial 47

PPU project - reference the SPU project - step 2

1. Go to the Project References category.

2. Click OK.

48 IDE Tutorial and User’s Guide Draft

PPU project - finish creating the PPU project

Click Finish to create the PPU project.

Chapter 11. IDE tutorial 49

PPU project - configure the PPU project

In the C/C++ Projects view:

1. Right click the PPU project.

2. Select Properties.

50 IDE Tutorial and User’s Guide Draft

PPU project - select the C/C++ build options

1. In the left pane, select C/C++ Build.

In the Configuration group at the top, you can change the current

configuration (for example. ppu-gnu32-debug, ppu-xl32-debug, and so on) or

create your own. In the Builder settings tab, you can manipulate builder and

makefile configurations.

2. Click Manage configurations.

Chapter 11. IDE tutorial 51

PPU project - view the Manage Configurations window

In this window you can rename, remove, or create new build configurations.

Click OK to continue.

52 IDE Tutorial and User’s Guide Draft

PPU project - add the libspe2 library to the library linker list - step 1

You use libspe2 in your PPU source code, so you need to add the library ″spe2″ to

the linker’s list of libraries.

1. In the Tool Settings tab, select the Libraries option, which is under the PPU

GNU 32 bit C Linker category.

2. Click the Add button in the Libraries pane on the right.

Chapter 11. IDE tutorial 53

PPU project - add the libspe2 library to the library linker list - step 2

Enter spe2, then click OK.

54 IDE Tutorial and User’s Guide Draft

PPU project - add the SPU executable as an embed SPU input - step 1

In order for the PPU project to embed the SPU project’s executable, you need to

add the SPU executable as an embed SPU input.

1. In PPU GNU 32 bit Embed SPU, select the Inputs option.

2. Click the Add button in the Embed SPU Inputs pane.

Chapter 11. IDE tutorial 55

PPU project - add the SPU executable as an embed SPU input - step 2

Click the Workspace button.

56 IDE Tutorial and User’s Guide Draft

PPU project - add the SPU executable as an embed SPU input - step 3

1. Select SPU → spu-gnu-debug → SPU.

2. Click OK twice to return to the Properties for PPU window.

Chapter 11. IDE tutorial 57

PPU project - configure additional settings

You can configure additional settings via the other tabs (for example, Build steps,

Binary parsers, and so on), and categories (such as Project References).

Take a minute to explore these other tabs and categories, then click OK.

58 IDE Tutorial and User’s Guide Draft

PPU project - create another new source file

1. Right click the PPU project.

2. Select New → Source File.

Chapter 11. IDE tutorial 59

PPU project - enter the name for the new source file

In the Source File field, enter ppu.c, then click Finish.

60 IDE Tutorial and User’s Guide Draft

PPU project - edit the source code file

Copy and paste the following source code into your editor, then save it (Ctrl+S):

#include <stdlib.h>

#include <stdio.h>

#include <errno.h>

#include <libspe2.h>

#include <pthread.h>

extern spe_program_handle_t SPU;

#define SPU_THREADS 8

void *ppu_pthread_function(void *arg) {

 spe_context_ptr_t ctx;

 unsigned int entry = SPE_DEFAULT_ENTRY;

 ctx = *((spe_context_ptr_t *)arg);

 if (spe_context_run(ctx, &entry, 0, NULL, NULL, NULL) < 0)

{

 perror ("Failed running context");

 exit (1);

 }

 pthread_exit(NULL);

}

int main()

{

 int i;

 spe_context_ptr_t ctxs[SPU_THREADS];

 pthread_t threads[SPU_THREADS];

 /* Create several SPE-threads to execute ’SPU’.*/

 for(i=0; i<SPU_THREADS; i++)

 {

 /* Create context */

 if ((ctxs[i] = spe_context_create (0, NULL)) == NULL)

 {

 perror ("Failed creating context");

 exit (1);

 }

 /* Load program into context */

 if (spe_program_load (ctxs[i], &SPU))

 {

 perror ("Failed loading program");

 exit (1);

 }

 /* Create thread for each SPE context */

 if (pthread_create (&threads[i], NULL,

 &ppu_pthread_function, &ctxs[i]))

 {

 perror ("Failed creating thread");

 exit (1);

 }

 }

 /* Wait for SPU-thread to complete execution. */

 for (i=0; i<SPU_THREADS; i++)

 {

 if (pthread_join (threads[i], NULL)) {

 perror("Failed pthread_join");

 exit (1);

 }

 /* Destroy context */

Chapter 11. IDE tutorial 61

if (spe_context_destroy (ctxs[i]) != 0) {

 perror("Failed destroying context");

 exit (1);

 }

 }

 printf("\nThe program has successfully executed.\n");

 return (0);

}

62 IDE Tutorial and User’s Guide Draft

Cell/B.E. simulator - create the local Cell/B.E. simulator

Objectives: After you have completed this part of the tutorial you will know how

to:

v Create an environment

v Configure and start the simulator

Now that the projects are created and properly configured, you can test your

program, but before you do this, you must create and start a Cell/B.E.

environment. IDE integrates IBM’s full-system simulator for the Cell/B.E.

processor into Eclipse, so that you are only a few clicks away from testing your

application on a Cell/B.E. environment, even if you do not have access to a

physical Cell/B.E. processor.

In the Remote Environments view at the bottom:

1. Right click Local Cell Simulator

2. Select Create.

Chapter 11. IDE tutorial 63

Cell/B.E. simulator - configure the simulator

This is the Local Cell Simulator properties window, which you can use to

configure the simulator to meet any specific needs that you might have. You can

modify an existing Cell/B.E. environment’s configuration at any time (as long as

its not running) by right clicking the environment and selecting Edit.

1. Enter a name for this simulator (for example, Local Cell Simulator).

2. Click the Simulator tab.

64 IDE Tutorial and User’s Guide Draft

Cell/B.E. simulator - configure the simulator options

In the Simulator tab, check the box labeled Show TCL console, then click Finish.

Chapter 11. IDE tutorial 65

Cell/B.E. simulator - start the simulator - step 1

1. Click the + next to Local Cell Simulator.

2. Select the new simulator environment.

3. Click the Start the Environment (green arrow) button.

66 IDE Tutorial and User’s Guide Draft

Cell/B.E. simulator - start the simulator - step 2

The simulator now begins to launch (this can take a few minutes).

Chapter 11. IDE tutorial 67

Create an application launch configuration

Objectives: After you have completed this part of the tutorial you will know how

to:

v Create and configure a C/C++ Cell Application launch configuration

Next, you need to create and configure a C/C++ Cell Application launch

configuration.

To do this, click Run → Open Debug Dialog.

68 IDE Tutorial and User’s Guide Draft

Application launcher configuration - create a new C/C++ Cell/B.E.

target application configuration

In the left pane:

1. Right click C/C++ Cell Target Application.

2. Select New.

Chapter 11. IDE tutorial 69

Application launcher configuration - modify the debug configuration

In the Main tab of the debug configuration, make sure that project PPU is in the

Project field.

For the C/C++ Application field, click Search Project.

70 IDE Tutorial and User’s Guide Draft

Application launcher configuration - select C/C++ application

The Qualifier section lists the different build configurations that can be used (32 or

64 bit gnu, xlc, and so on). The Binaries section lists the available binaries for the

corresponding Qualifier. For the PPU project, you have not changed the default

build configuration, so only one Qualifier is currently available.

Select the PPU binary and click OK.

Chapter 11. IDE tutorial 71

Application launcher configuration - select target environment

1. Navigate to the Target tab.

2. For the Choose target field, select the simulator that was just created, then go

to the Launch tab.

72 IDE Tutorial and User’s Guide Draft

Application launcher configuration - configure the Launch tab

Here you can specify command line arguments as well as bash commands that are

executed before and/or after the Cell/B.E. application runs.

Next, go to the Synchronize tab.

Chapter 11. IDE tutorial 73

Application launcher configuration - specify resources to synchronize

In this tab, you can specify resources (such as input/output files) that need to be

synchronized with the Cell/B.E. environment’s file system before, or after the

application runs or both.

Use New upload rule to specify resources to copy to the Cell/B.E. environment

before the application runs, and use New download rule to copy resource(s) back

to your local file system after the application has run.

Do not forget to check the Upload rules enabled and/or Download rules enabled

boxes after adding any upload/download rules.

Now go to the Debugger tab.

74 IDE Tutorial and User’s Guide Draft

Application launcher configuration - select debugger and launch the

debug configuration

In the Debugger field, you can choose from Cell PPU gdbserver, Cell SPU

gdbserver, or Cell BE gdbserver.

To debug only PPU or SPU programs, select Cell PPU gdbserver or Cell SPU

gdbserver, respectively. The Cell BE gdbserver option is the combined debugger,

which allows for debugging of PPU and SPU source code in one debug session.

1. Set the Debugger field to Cell BE gdbserver.

2. Click Debug to launch the debug session.

Chapter 11. IDE tutorial 75

Debug the application

Objectives: After you have completed this part of the tutorial you will know how

to:

v Use the debugger functions to step through your source code

The debug perspective functions in a similar way to any other GUI debugger you

have may have used in the past. You can use it to step through your Cell/B.E.

application’s source code, while you monitor variables and register values, so you

can find and fix bugs faster.

76 IDE Tutorial and User’s Guide Draft

Debug the application - switch to the C/C++ perspective

Switch to the C/C++ perspective. To do this:

1. Click the double right arrows at the top right

2. Select C/C++.

Chapter 11. IDE tutorial 77

Dynamic profiling tool

Objective: After you have completed this part of the tutorial you will know how

to:

v Include the profiling functions in the spu.c code

v Run and view the results of dynamic performance analysis

Next, you see how to use the dynamic profiling tool on the SPU code.

1. Open the editor for spu.c.

2. Uncomment the 3 lines prof_clear();, prof_start();, and prof_stop();.

3. Rebuild the project by saving the source file (Ctrl+S).

78 IDE Tutorial and User’s Guide Draft

Dynamic profiling tool - change SPU modes in the simulator window

In order to use the dynamic profiling tool, the SPE’s must be in pipeline mode.

Currently the SPE’s are running in fast mode, so you need to change this.

1. Open the Simulator GUI window (systemsim-cell),

2. Click the button labeled SPU Modes.

Chapter 11. IDE tutorial 79

Dynamic profiling tool - change the SPEs to pipeline mode

To change all of the SPE’s to pipeline mode, click the Pipe button at the bottom,

then go back to Eclipse.

80 IDE Tutorial and User’s Guide Draft

Dynamic profiling tool - launch the PPU application

Now that you have included the profiling functions in the spu.c code, and have

the SPE’s set to Pipeline mode, you can launch the application.

To do this, click Run → Run History → PPU.

Chapter 11. IDE tutorial 81

Dynamic profiling tool - view the results of the dynamic performance

analysis

You can view the results of the dynamic performance analysis.

To do this:

1. Open the Simulator GUI window.

2. Expand the category SPE0

3. Open SPUStats.

82 IDE Tutorial and User’s Guide Draft

SPU timing tool - static timing analysis

Objectives: After you have completed this part of the tutorial you will know how

to:

v Launch the SPU Timing tool

v View data collected by the SPU Timing tool

To launch the SPU Timing tool:

1. Right click spu.c

2. Select SPU Timing → Launch SPU Timing with given parameters

Chapter 11. IDE tutorial 83

SPU timing tool - view the SPU timing output

You see the output from the SPU timing tool in the Console view.

Refresh your SPU project (right click SPU project, then click Refresh), to display a

new directory named sputiming, which also contains the SPU timing output.

84 IDE Tutorial and User’s Guide Draft

Simulator console - toggle the simulator console view

Objective: After you have completed this part of the tutorial you will know how

to:

v Switch between available console views

In the Console view toolbar, a small blue monitor icon is displayed. You can use

this icon to toggle between the available consoles.

Click the down arrow to the right of the blue monitor icon.

Chapter 11. IDE tutorial 85

Simulator console - select the simulator TCL console

Select the option TCL console for Local Cell Simulator.

86 IDE Tutorial and User’s Guide Draft

Simulator console - view the simulator’s TCL console

This console can be used to pass TCL commands to the simulator.

Chapter 11. IDE tutorial 87

Simulator console - use the simulator’s Linux console

You can execute Linux commands inside the simulator (as long as the simulator is

not stopped or paused).

In the Console view, switch to the console: Linux Console for Local Cell

Simulator.

88 IDE Tutorial and User’s Guide Draft

ALF API wizard

Objectives: After you have completed this part of the tutorial you will know how

to use the ALF API wizard to:

v Create an ALF project

v Import the generated source code and configure the projects’ properties to

include the necessary libraries and to enable embedded SPU functionality

v Modify the ALF API wizard parameters

v Create and configure a new Cell/B.E. application launcher, so that the shared

library project’s .so file (libmy_alf_project.so) can be loaded during the remote

application execution.

v Launch an ALF application

As of version 3.0, IDE includes a wizard which allows you to easily create a

Cell/B.E. application that utilizes the Accelerated Library Framework (ALF) API.

The ALF API provides a set of functions to a set of parallel problems on

multi-core, host-accelerator type systems, such as the Cell/B.E. processor. Features

of ALF include data transfer management, parallel task management, double

buffering, and data partitioning. The next section of the tutorial walks you through

an example use case of the ALF API Wizard.

To start using the wizard, click File → New → Project.

Chapter 11. IDE tutorial 89

ALF API wizard - start the ALF IDE wizard

1. Expand the ALF for Cell category.

2. Select the Accelerated Library Framework (ALF) API Wizard option.

3. Click Next.

90 IDE Tutorial and User’s Guide Draft

ALF API wizard - enter a project name

Enter a project name, then click Next.

Chapter 11. IDE tutorial 91

ALF API wizard - change general parameters

Here you can change the ALF IDE wizard’s general parameters. You can return to

this page at any time if you need to make any changes.

Click Next.

92 IDE Tutorial and User’s Guide Draft

ALF API wizard - add ALF buffers

This page displays any existing buffers, allows you to create new buffers, displays

remaining SPU local memory, and displays the data transfer entry status. Click the

corresponding What’s this? text to learn more about the local memory and data

transfer status sections.

Click the Add button to create a new buffer.

Chapter 11. IDE tutorial 93

ALF API wizard - add the first buffer

Enter information in the fields as shown below, then click OK.

94 IDE Tutorial and User’s Guide Draft

ALF API wizard - add a second buffer

Use the Add button to create another buffer, enter the parameters as shown below

(use the same values as mat_a), then click OK.

Chapter 11. IDE tutorial 95

ALF API wizard - add the third buffer

Use the Add button to create the third and final buffer, enter the parameters as

shown below (same values as mat_a and mat_b, except for the Buffer type), then

click OK.

96 IDE Tutorial and User’s Guide Draft

ALF API wizard - finish using the ALF IDE wizard

Click Finish to complete the wizard. The wizard automatically creates and

configures the three new projects.

Chapter 11. IDE tutorial 97

ALF API wizard - ALF IDE wizard complete

The three new projects have now been created, the generated source code has been

imported, and the projects’ properties have been configured to include the

necessary libraries and to enable embed SPU functionality. Looking at the source

code, you notice that the ALF IDE wizard has generated code to handle many

trivial tasks, such as input/output transfer list preparation, but you must write

your own code for the computing kernel and data initialization.

98 IDE Tutorial and User’s Guide Draft

ALF API wizard - Create new launch configuration

Finally, you must create and configure a new Cell/B.E. application launcher, so

that the shared library project’s .so file (libmy_alf_project.so) can be loaded during

the remote application execution.

Click Run → Open Run Dialog...

Chapter 11. IDE tutorial 99

ALF API wizard - add a new upload rule

1. Create a new C/C++ Cell Target Application configuration (like you did earlier

in the tutorial).

2. Go to the Synchronize tab, then click New upload rule.

100 IDE Tutorial and User’s Guide Draft

ALF API wizard - create a new upload rule - step 2

Make sure that the option Use directory from launch configuration is checked,

then click the Workspace button.

Chapter 11. IDE tutorial 101

ALF API wizard - select the shared library .so file

1. Expand the Workspace and libmy_alf_project categories.

2. Click the ppu-gnu32-debug folder to view its contents.

3. Check the box for libmy_alf_project.so

4. Click OK twice to return to the Synchronize tab.

102 IDE Tutorial and User’s Guide Draft

ALF API wizard - launch an ALF application

All that remains to be done is to check the box labeled Upload rules enabled. The

libmy_alf_project.so file will now be copied to the working directory automatically

before the application runs, so the PPU project executable can load it during

runtime.

Click Run to begin running the application.

Chapter 11. IDE tutorial 103

IDE PDT plugin

Objective: After you have completed this part of the tutorial, you will know how

to:

v Use the PDT to generate and view trace files

IDE provides an easy way to generate trace files using PDT - Performance

Debugging Tools. First you must set PDT flags for your project. To do this, right

click the project and choose Properties.

104 IDE Tutorial and User’s Guide Draft

IDE PDT plugin - set up the C Linker flag

1. In the C/C++ Build, Settings category, go to C Linker options.

2. Select Profile & Trace.

3. Check Enable PDT compiler flags.

Chapter 11. IDE tutorial 105

IDE PDT plugin - set up the C compiler flag

To set up the C compiler flag, do the following:

1. Go to C Compiler with Debug Options.

2. Select Profile & Trace.

3. Check Enable PDT compiler flags.

4. Click OK to finish.

106 IDE Tutorial and User’s Guide Draft

IDE PDT plugin - rebuild the project with PDT flags

Rebuild the project with PDT flags. The project must be built without any errors.

Now you need to create a XML configuration file for PDT.

Chapter 11. IDE tutorial 107

IDE PDT plugin - create a PDT configuration file

To create our XML configuration file for PDT, go to File → New → Other

108 IDE Tutorial and User’s Guide Draft

IDE PDT plugin - open the wizard

To open the wizard, in the Performance Debugging Tool category, select

Configuration File for Cell, then click Next.

Chapter 11. IDE tutorial 109

IDE PDT plugin - enter a file name

Select a location and a name for the XML file, then click Next.

110 IDE Tutorial and User’s Guide Draft

IDE PDT plugin - select event groups

In this window you can select which event groups your PDT session will capture.

Select any event group and click Next.

Chapter 11. IDE tutorial 111

IDE PDT plugin - select sub-events

Next you need to fine tune your event selection by selecting events inside the

events groups you chose before.

Click Next when you have finished.

112 IDE Tutorial and User’s Guide Draft

IDE PDT plugin - set colors for events

In this last step, you select different colors for the events groups, which you chose

on previous steps. This information is part of the PDT’s XML configuration file and

is used to generate PDT trace files. Click Finish to create the XML configuration

file.

Chapter 11. IDE tutorial 113

IDE PDT plugin - modify the XML configuration file

1. Open the created XML file and set the application_name attribute to match the

binary that will be used with PDT.

2. Save the files.

3. Press F5 to refresh the workbench.

114 IDE Tutorial and User’s Guide Draft

IDE PDT plugin - using the Profile Launcher

You can now launch our application with PDT support. To do this:

1. Right-click the editor with the C file that will generate the executable.

2. Select Open Profile Dialog.

Chapter 11. IDE tutorial 115

IDE PDT plugin - launch the application with PDT support

1. Double left-click C/C++ Cell PDT target application to create a new launch

configuration

2. In the PDT tab, select the option Copy XML file to remote machine. You need

to configure:

v Remote directory to copy the XML file - must be a valid directory

v Local XML file. Select the configuration file you created on previous steps

v Remote directory to create the trace files - must be a valid directory

v Prefix for trace file name - any valid ASCII string

v Local trace directory, where the generated trace files will be downloaded

from the remote environment - must be a valid directory

Click Profile to run the application with PDT support.

116 IDE Tutorial and User’s Guide Draft

IDE PDT plugin - check generated trace files

After the launch finishes, you can check the results of our profiling by opening the

local directory set to receive the trace files generated.

These trace files can be viewed with the Eclipse-based VPA tool using the Trace

Analyzer perspective, for example.

Chapter 11. IDE tutorial 117

View the Eclipse preferences window

You can view and modify numerous cell environment settings in the Preferences

window.

Click Window → Preferences...

118 IDE Tutorial and User’s Guide Draft

View the IDE environment preferences

On the left side, expand the Cell category. Here you can change many different

options regarding IDE including Debug options, Cell Environment settings, and

SPU Timing binary location.

Chapter 11. IDE tutorial 119

Tutorial finished!

This concludes the IDE tutorial!

120 IDE Tutorial and User’s Guide Draft

Part 4. ALF for IDE programmer’s guide

The following topics describe how to use ALF distribution template provided by

IDE.

© Copyright IBM Corp. 2006, 2008 121

122 IDE Tutorial and User’s Guide Draft

Chapter 12. ALF for IDE overview

The ALF API provides a set of functions to solve a set of parallel problems on

multi-core memory hierarchy systems. This implementation of this API is focused

on data parallel problems on a host-accelerator type hybrid system. ALF offers an

interface to write data parallel applications without requiring architecturally

dependent code. Features of ALF include data transfer management, parallel task

management, double buffering, and data partitioning.

The ALF data distribution template provided by IDE, is designed to support data

parallel programming style for solving data parallel problem for arrays. Similar to

High Performance FORTRAN (HPF), the ALF data distribution template supports

three data distribution models, which are:

v *

v CYCLIC

v BLOCK

The data distributions are presented as a serial of data transfer list entries. Data

distributions provided by ALF data distribution template are for arrays of one,

two, and three dimensions.

The data distributions are applied to two types of data, which are input buffer and

output buffer.

© Copyright IBM Corp. 2006, 2008 123

124 IDE Tutorial and User’s Guide Draft

Chapter 13. Data distribution overview

ALF IDE introduces data distribution directives to provide you with control over

locality and data partition.

A DISTRIBUTE directive is used to indicate how data is to be partitioned among

continuous memories. It specifies, for each dimension of an array, a mapping of

array indices to accelerated nodes. Each dimension of an array may be distributed

in one of three ways:

v * : No distribution

v BLOCK(n) : Block distribution (default: n= N/P), in which N is the size of array

and P is the number of accelerated node.

v CYCLIC(n) : Cyclic distribution

BLOCK distribution

Let N be the number of elements in an array dimension, and let P be the number

of accelerated nodes assigned to that dimension. Then, as illustrated in

Figure 3,Figure 4, and Figure 5 on page 126, a BLOCK distribution divides the

indices in a dimension into contiguous, equal-sized blocks of size N/P.

Figure 3. A 1D array BLOCK distribution for four accelerator nodes

Figure 4. 2D array BLOCK distributions for four accelerator nodes

© Copyright IBM Corp. 2006, 2008 125

BLOCK(m) implies that after giving each accelerator node the array should have

been distributed; if there are any elements left over an error has occurred. It

implies that each accelerator node must get at most one block of elements

CYCLIC distribution

Cyclic distribution distributes elements of an array to processors in a round robin

fashion. If an array, A has elements N and is mapped onto P accelerator nodes,

each node gets (a maximum) total of ┌N / P┐ separate elements. See for and as

examples***WRITER COMMENT; THIS SENTENCE DOES NOT MAKE SENSE. 3D

CYCLIC distribution is inefficient and confusing and is therefore NOT supported

in the ALF data distribution template.

Figure 5. 3D array BLOCK distributions for four accelerator nodes

Figure 6. 1D array CYCLIC distributions for four accelerator nodes

126 IDE Tutorial and User’s Guide Draft

There are some limitation for CYCLIC distribution, they are:

v The memory address of each CYCLIC should be 16 Byte aligned.

v The size (Bytes) of each CYCLIC must be 1, 2, 4, 8 and integral times of 16

(instance: 1, 2, 4, 8, 16, 32 ...). Refer to the API definition descriptions for further

information.

CYCLIC(m) retains characteristics of both BLOCK and CYCLIC distributions: in

theory, blocks of m elements are grouped together which is useful for

neighborhood calculations and the cyclic distribution policy should promote a

reasonable degree of load balancing.

Practice with data distribution directives

The following topics describe how to work with data distribution directives:

v “A matrix addition example”

v A simple solution to solve the problem

v “Data layout and partition scheme” on page 128

A matrix addition example

This is a simple application that adds two 2D matrixes and stores the result to a

third matrix. For a 2D matrix addition, the mathematical definition is as follows:

C = A + B, where:

cij

= aij

+ bij

or

Figure 7. 2D array CYCLIC distributions for four accelerator nodes

Chapter 13. Data distribution overview 127

Understanding the problem

Simple solution

In the following analysis, assume the data to be a 1024 x 512 single precision

floating point matrix. The following is a sample of C code that solves the problem:

float mat_a[1024][512];

float mat_b[1024][512];

float mat_c[1024][512];

int main(void)

{

 int i,j;

 for (i=0; i<1024; i++)

 for (j=0; j<512; j++)

 mat_c[i][j]= mat_a[i][j] + mat_b[i][j];

 return 0;

}

The limitation with this simple approach is that it cannot run faster on a system

with many accelerators that can process the ci,j

= ai,j

+ bi,j

in parallel. There are

parallel programming languages and models that can speed up the program. The

following section describe steps to rewrite this program with ALF APIs for parallel

acceleration.

Potential solution for parallel speed increase

In general, most matrix mathematical operations can be decomposed into similar

operations on many submatrices. The operations on these submatrices can be done

in parallel if there are no dependencies between them. For example, divide the

matrix into 128 submatrices each of which has 64 x 64 elements. Then the

operation can be done on each 64 x 64 submatrix in parallel. In theory, the

computation of the 1024 x 512 matrix addition can be completed in 1/128th of the

time of the simple serialized code. The following examples use the submatrix

approach.

Data layout and partition scheme

Two dimensional matrices are usually represented in 2D arrays in C. The actual

memory layout of the 2D array in C is in 1D arrays concatenated by the

second/column index, as shown by Figure 8.

Figure 8. Memory organization of a 2D array ″a[m][n]″

128 IDE Tutorial and User’s Guide Draft

In the matrix addition example from the previous section, the submatrices were the

basic unit of data. In the above C matrix data structure, a submatrix is part of the

whole array as shown by Figure 9 and Figure 10 on page 130. This provides the

following options to choose from:

v Partition Scheme A: With this partition scheme, the submatrices are a part of

the whole column or row of the matrix. Or more formally, one of the

submatrices of a[m][n] is defined as sa[h][v] where the h < m and v <= n. This

is illustrated by the Figure 9.

v Partition Scheme B: With this partition scheme, we define the submatrices as a

set of adjacent full length rows of the matrix. One of the submatrices of a[m][n]

is defined as ″sa[h][v]″ where the h < m and v == n. See Figure 10 on page 130

Figure 9. Partition scheme A: Data partition of 2D sub matrix

Chapter 13. Data distribution overview 129

Figure 7 on page 127 shows the differences between the two schemes. The data of

the submatrix in scheme A is collected from disjointed segments in the data buffer

of the matrix. For scheme B, the submatrix is from one contiguous segment of the

matrix. Mathematically this makes no significant difference, but the data

movement in our matrix addition example is significantly more complex in scheme

A than in scheme B, as can be seen by the following example pseudo code with

data distribution directives.

DECLARE ACCELERATE_NODES = 6;

float mat_a[1024][512];

float mat_b[1024][512];

float mat_c[1024][512];

CYCLIC(512,8) ONTO mat_a

CYCLIC(512,8) ONTO mat_b

CYCLIC(512,8) ONTO mat_c

for (i=0; i<512; ++i)

for (j=0; j<8; ++j)

mat_c[i][j]= mat_a[i][j] + mat_b[i][j];

Based on the above analysis, scheme B is preferred in this matrix addition

example. Remember that this situation can change in some real world scenarios

where large contiguous data movement might not be supported.

Figure 10. Partition Scheme B: Data partition of 2D sub matrix

130 IDE Tutorial and User’s Guide Draft

Chapter 14. ALF IDE wizard overview

This section describes the ALF IDE wizard.

It covers the following topics:

v “Basic structure of an ALF application”

v “What does the ALF IDE wizard do?”

Basic structure of an ALF application

The basic structure of an ALF application is shown in Figure 11. In general the

flow is linear.

On the host side, you first initialize the ALF runtime and then create a compute

task. After you have created the task, you add work blocks to the work queue of

the task. Then, you wait for the task to complete and shut down the ALF runtime

to free up allocated resources.

On the accelerator side, after an instance of the task is spawned, it waits for

pending work blocks to be added to the work queue. Then the alf_comp_kernel is

called for each work block. If the partition location attribute of a task is partitioned

in accelerated node, alf_accel_intput_list_prepare is called before the compute

kernel is invoked and alf_accel_output_list_prepare is called after the compute

kernel exits.

What does the ALF IDE wizard do?

The ALF IDE wizard aims to release you from trivial ALF programming tasks, and

to help you focus on your problem logic.

Figure 11. ALF application structure and execution flow

© Copyright IBM Corp. 2006, 2008 131

The ALF IDE wizard automatically generates source code for host and accelerator

code. In most cases, you only needs to add code for computing kernel and data

initialization.

The ALF IDE wizard does several tasks works automatically, as described in the

following figure.

Figure 12 shows that the ALF IDE wizard reduces some trivial and routine tasks,

such as initialization, and preparation of the input/output transfer list. The ALF

IDE wizard also generates the correct Makefiles for you.

The ALF IDE Wizard does not automatically generate source code for the

computing kernel and data initialization tasks. You need to generate code for your

computing kernel and data initialization.

IDE also cannot handle the data transfer list for irregular data movement. In this

case, it is suggested that you use the initialization and skeleton template for the

ALF project to generate an empty ALF project, and code your own application.

If you need to add any other libraries or headers into application, you need to

revise the project’s properties to add these dependencies.

Figure 12. Tasks performed by the ALF IDE wizard

132 IDE Tutorial and User’s Guide Draft

Chapter 15. Programming tips using the ALF IDE wizard

The following topics provide tips about how to program using the ALF IDE

wizard.

Data layout and partition scheme

Data partition is crucial to the ALF programming model. Incorrect data

partitioning and data layout design either prevents ALF from being applicable or

results in degraded performance. For the best performance, use the following

guidelines for data partitioning and data layout design.

Note: Data partition design and layout can be platform-dependent, so the best

design for one architecture might not perform well on another.

Data partition and layout is closely coupled with compute kernel design and

implementation, so you should them considered simultaneously.

v Use the correct data partition size

Often, the accelerator local memory or data cache is very limited. A significant

performance penalty can occur if the partitioned data cannot fit into this

memory limitation. For example, on Cell/B.E. architecture, if a single block of

partitioned data is larger than 128 KB, it might not be possible to support

double buffering on the SPE side. This can result in up to 50% performance loss.

v Minimize the number of data movements.

A large amount of data movement can cause performance loss in applications.

Improve performance by avoiding unnecessary data movements. Use the correct

data distribution size to improve the performance.

v Know address alignment limitations on specific platforms

If data is stored on aligned addresses, the processor can access it faster than data

on unaligned addresses. On platforms such as Cell/B.E., the data movement

from the local memory of the SPE can only be based on 16 byte aligned

addresses.

For more detail about data partitioning restrictions, refer to “Data partitioning

limitations” on page 143.

ALF host program and data transfer lists

One important decision for data transfer list is to choose whether to use accelerator

side data transfer list generation. Because there might be a large number of

accelerators used in one compute task if the data transfer list is somewhat

complex, the host might not be able to generate work blocks faster than the

accelerators can process. In this case, you can supply the data needed for data

transfer list generation in the parameters of the work block and use the

accelerators to generate the data transfer lists based on these parameters.

You can also start a new task for queuing while another task is running. You can

then prepare the work blocks for the new task in advance before the task actually

runs.

© Copyright IBM Corp. 2006, 2008 133

ALF IDE wizard generates data transfer lists both in host and in accelerator

simultaneously. You can use the macro ACCELERATOR_PARTITION defined in

common.h to switch between them.

134 IDE Tutorial and User’s Guide Draft

Chapter 16. Programming with ALF IDE wizard

This section describes how to program with the ALF IDE wizard.

It covers the following topics:

v “Using the ALF IDE wizard to create an ALF project” on page 136

v “ALF IDE wizard parameters” on page 137

v “Using user-defined types” on page 140

v “Example: Matrix addition” on page 140

© Copyright IBM Corp. 2006, 2008 135

Using the ALF IDE wizard to create an ALF project

This topic describes what you need to do to create an ALF project.

You need to follow the following steps to generate an ALF project.

1. Create an ALF project and give the project a name.

2. Specify the expected stack size.

3. Select the expected number of accelerators (1, 2, 16, and 0: for all available).

4. Select the partition method (host or accelerator).

5. Describe the data distribution model for each buffer. For each new buffer input,

performing the following steps:

a. Enter the variable name, element type (the type for each element in the

buffer), and basic unit (an ALF predefined type or the same as element

type) of the element

b. Specify the buffer type (INPUT or OUTPUT)

c. Specify the dimension and size (1, ... dimension) for each dimensions of the

array

d. Specify the distribution model for this array (CYCLIC or BLOCK), and

parameters for this distribution model
6. Finish. The ALF IDE wizard generates code according to your input.

7. Revise the generated code as required.

136 IDE Tutorial and User’s Guide Draft

ALF IDE wizard parameters

The following table lists the user input parameters.

 Table 2. Basic user input parameters

Token Description Data range

$PROJECT_NAME Project name (Step 1) Strings

$STACK_SIZE Expected stack size (Step 2) From 10 Bytes to 246 KBytes

$EXP_ACCEL_NUM Expected number of accelerator

(Step 3)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 0

for all available.

Note: All available option is invalid when any

buffer’s data distribution model is BLOCK

$PARTITION_METHOD Partition model, host, or accelerator

(Step 4)

0 : Partition by host

1 : Partition by accelerator

$VARIABLE_NAME Name of the data array (Step 5a) Valid variable name in C language, it is

case-sensitive. Different buffer should have different

variable name.

$ELEMENT_TYPE Type of element for the data array

indicated by $VARIABLE_NAME (Step

5a)

C language built in type or user defined data type.

Figure 13. Creating ALF project

Chapter 16. Programming with ALF IDE wizard 137

Table 2. Basic user input parameters (continued)

Token Description Data range

$ELEMENT_UNIT Array data type. (Step 5a) Basic data types. The choices are:

v ALF data types. There are 6 types:

 ALF_DATA_INT16

ALF_DATA_INT32

ALF_DATA_INT64

ALF_DATA_FLOAT

ALF_DATA_DOUBLE

ALF_DATA_BYTE

v As defined by $ELEMENT_TYPE

$BUFFER_TYPE Buffer type of the data array

indicated by $VARIABLE_NAME. Input

buffer or output buffer. (Step 5b)

ALF_BUFFER_INPUT: input buffer

ALF_BUFFER_OUTPUT: output buffer

$NUM_DIMENSION Number of dimension for array

indicated by $VARIABLE_NAME. (Step

5c)

1, 2, or 3

$DIMENSION_SIZE_X X dimension size for array indicated

by $VARIABLE_NAME.

For a 3D dimension array A, its

dimensions represented as

A[Z][Y][X]

For a 2D dimension array B, its

dimensions represented as B[Y][X]

For a 1D dimension array C, its

dimensions represented as C[X](Step

5c)

1, ...

$DIMENSION_SIZE_Y Y dimension size for array indicated

by $VARIABLE_NAME. Only available

when the array dimension is 2 or 3.

For a 3D dimension array A, its

dimensions represented as

A[Z][Y][X]

For a 2D dimension array B, its

dimensions represented as

B[Y][X](Step 5c)

1, ...

0 when the dimension of array is less than 2.

$DIMENSION_SIZE_Z Z dimension size for array indicated

by $VARIABLE_NAME. Only available

when the array dimension is 3.

For a 3D dimension array A, its

dimensions represented as

A[Z][Y][X].(Step 5c)

1, ...

0 when the dimension of array is less than 3.

$DISTRIBUTION_MODEL_X The distribution model for X

dimension of data array which

indicated by $VARIABLE_ (Step 5d)

BLOCK, CYCLIC, or *

138 IDE Tutorial and User’s Guide Draft

Table 2. Basic user input parameters (continued)

Token Description Data range

$DISTRIBUTION_SIZE_X The distribution size for X

dimension distribution (indicated by

$VARIABLE_NAME) for data array

(indicated by $VARIABLE_NAME). (Step

5d)

CYCLIC: User input integer number, and limited

into (1 - $DIMENSION_SIZE_X). For BLOCK

distribution, it is calculated by IDE as:

 $DISTRIBUTION_SIZE_X = $DIMENSION_SIZE_X /

$EXP_ACCEL_NUM

*: $DISTRIBUTION_SIZE_X = $DIMENSION_SIZE_X

$DISTRIBUTION_MODEL_Y The distribution model for Y

dimension of data array which

indicated by $VARIABLE_NAME

Only available when the dimension

of data array is 2 or 3.

BLOCK, CYCLIC, or

Should not appear in the parameter file when the

dimension of array is less than 2.

$DISTRIBUTION_SIZE_Y The distribution size for Y

dimension distribution (indicated by

$DISTRIBUTION_MODEL_Y) for data

array (indicated by $VARIABLE_NAME).

Only available when the dimension

of data array is 2 or 3.(Step 5d)

CYCLIC: User input integer number, and limited

into (1 - $DIMENSION_SIZE_Y). For BLOCK

distribution, it is calculated by IDE as:

 $DISTRIBUTION_SIZE_Y = $DIMENSION_SIZE_Y /

$EXP_ACCEL_NUM

*: $DISTRIBUTION_SIZE_Y = $DIMENSION_SIZE_Y

Should not appear in the parameter file when the

dimension of array is less than 2.

$DISTRIBUTION_MODEL_Z The distribution model for Z

dimension of data array which

indicated by $VARIABLE_NAME

Only available when the dimension

of data array is 3.(Step 5d)

BLOCK or *

Should not appear in the parameter file when the

dimension of array is less than 3.

$DISTRIBUTION_SIZE_Z The distribution size for Z

dimension distribution (indicated by

$DISTRIBUTION_MODEL_Z) for data

array (indicated by $VARIABLE_NAME).

Only available when the dimension

of data array is 3.(Step 5d)

BLOCK:

 $DISTRIBUTION_SIZE_Z = $DIMENSION_SIZE_Z /

$EXP_ACCEL_NUM

*: $DISTRIBUTION_SIZE_Z = $DIMENSION_SIZE_Z

Should not appear in the parameter file when the

dimension of array is less than 3.

Data partition limitations

There are some limitations for data partitions.

The partition is eventually turned into a serial of data transfer entry. The number

of these entries for each buffer after partitioning should be equal. The following

examples illustrate some valid and invalid data distributions for arrays:

A[1024][512], B[512][128].

v (CYCLIC(512), CYCLIC(16)) ONTO A, and (CYCLIC(128), CYCLIC(8) ONTO B is

valid, because the number of DT entries for these two distributions are equal.

(For A, the number of DT entry is (1024/512) * (512 / 16), and for B, the number

of DT entry is (512 / 128) * (128/6))

v (*, CYCLIC(16)) ONTO A, and (CYCLIC(128), CYCLIC(16)) ONTO B is valid,

because the numbers of DT entry for these two distributions are equal, it is 32.

Chapter 16. Programming with ALF IDE wizard 139

v (CYCLIC(512), CYCLIC(16)) ONTO A, and (CYCLIC(128), CYCLIC(16)) is

invalid, because the numbers of DT entry for these two distributions are not

equal.

The data size of each data transfer entry must be a multiple of 16 Byte (16 Bytes,

32 Bytes, and so on).

The sum of total size of buffer and free stack size should not exceed the size of

Local Storage (256 KBytes) for Cell/B.E. platform.

Using user-defined types

The ALF IDE wizard supports user-defined types. When your input is not a

C-language built-in type, the ALF IDE wizard generates a user-defined type in

common.h.

For example, when you input an array as my_structure a[1024], a struct named

my_structure is presented in common.h.

typedef

struct _my_structure_t

{

//TODO: Code your data structure here, make sure the size (Byte)

//of this structure is 1, 2, 4, 8 or power of 16.

char

pad[16];

}my_structure;

You can revise the structure generated by IDE as you require. You need to make

sure that the size of the structure is 1, 2, 4, 8, or power of 16 (Byte) as this is a

limitation of the Cell/B.E. platform.

The following types are treated as C programming language built-in types.

IDE supported C programming language built-in types

"char", "unsigned char", "signed char", "short", "unsigned short",

"int", "unsigned int","long", "signed", "unsigned","unsigned long",

"long long","unsigned long long", "float", "double", "long double",

"_Bool", "float _Complex", "double _Complex", "long double _Complex"

Example: Matrix addition

The following topics describe how to code your computing kernel.

Step-by-step instructions

Refer to the Chapter 11, “IDE tutorial,” on page 31 for a step by step walkthrough

of how to use the ALF IDE wizard.

Coding your computing kernel

You must code your computing kernel and data initialization. In this step, you

code the computing kernel in accelerated code.

By editing spu_matrix_add.c, enter the following code into alf_accel_comp_kernel.

The computing kernel will look like the following example (user-defined code is

marked as bold).

140 IDE Tutorial and User’s Guide Draft

Computing kernel for matrix addition

int alf_accel_comp_kernel(void *p_task_context __attribute__

((unused)),void *p_parm_ctx_buffer,void *p_input_buffer,void

*p_output_buffer,void *p_inout_buffer __attribute__ ((unused)),unsigned

int current_count __attribute__ ((unused)),unsigned

int total_count __attribute__ ((unused)))

{

 float *mat_a;

 float *mat_b;

 float *mat_c;

 my_param_t *p_param = (my_param_t *) p_parm_ctx_buffer;

 mat_a = (float*) ((char*)p_input_buffer + p_param->c.buffer_offset[0]);

 mat_b = (float*) ((char*)p_input_buffer + p_param->c.buffer_offset[1]);

 mat_c = (float*) ((char*)p_output_buffer + p_param->c.buffer_offset[2]);

 //TODO: Code your computing kernel here

 int i;

 for(i=0; i<p_param->c.size[0]; ++i)

 {

 mat_c[i] = mat_a[i] + mat_b[i];

 }

 return 0;

}

We will also add a data initialization code in ppu_matrix_add.c, and call it in main

(). As illustrated in the next sample and marked as bold.

Data preparation in PPU side

static void prepare_data()

{

int i, j;

for (i=0; i<1024; ++i)

for (j=0; j<512; ++j)

{

mat_a[i][j] = i * 2.0 + j;

mat_b[i][j] = i * 3.0 + j;

mat_c[i][j] = 0.0;}

}

...

int main()

{

prepare_data();

alf_init(NULL, &alf_handle);

if ((err = alf_query_system_info(alf_handle, ALF_QUERY_NUM_ACCEL, &nodes)) < 0)

{

fprintf(stderr, "Error in query system information\n");

return (-1);

}

...

}

Chapter 16. Programming with ALF IDE wizard 141

142 IDE Tutorial and User’s Guide Draft

Chapter 17. Platform-specific constraints for ALF IDE Wizard

on Cell/B.E. architecture

The section describes the following platform-specific constraints:

v “Data distribution limitations”

v “Data partitioning limitations”

v “Local memory constraints for SPE” on page 144

v “User-defined type size limitations” on page 146

Data distribution limitations

This topic describes the limitations for the various ALF data distribution policies.

For BLOCK distribution, the expected accelerator number should be exact, all

available is not allowed. This means if there has any buffer for which the

distribution model is BLOCK, the option all available options cannot be selected.

CYCLIC distribution is only available when the dimension of an array is one or

two.

Data partitioning limitations

For each array, the number of blocks after partitioning should be equal, as they are

put together into the same ALF work block. Errors occur when the number of

partitioned blocks is not equal.

The size of each block should be bound into 16 bytes (such as 16 byte, 32 byte, 48

byte, and so on). The following describes how to calculate the size of data block

after partitioning.

v data_transfer_size = sizeof($ELEMENT_TYPE) * $DISTRIBUTION_SIZE_X, when

the array dimension is one

v data_transfer_size = sizeof($ELEMENT_TYPE) * $DISTRIBUTION_SIZE_X *

$DISTRIBUTION_SIZE_Y, when the array dimension is two

v data_transfer_size = sizeof($ELEMENT_TYPE) * $DISTRIBUTION_SIZE_X *

$DISTRIBUTION_SIZE_Y * $DISTRIBUTION_SIZE_Z, when the array dimension is

three

If ((data_stransfer_size % 16) != 0), an error occurs.

To sum up, for ALF forCell/B.E., be aware of the following data transfer list

constraints:

v Data transfer information for a single working block can consist of up to eight

data transfer lists for each direction transfer (local store to main memory and

vice versa)

v Each data transfer list consists of up to 2048 data transfer entries

v Each entry can describe up to 16 KB of data transfer between the continuous

area in main memory and local storage

v The local store area described by each entry within the same data transfer list

must be contiguous

© Copyright IBM Corp. 2006, 2008 143

v The transfer size and effective address low 32 bits for each data transfer entry

must be 16 bytes aligned

Local memory constraints for SPE

The size of local memory on the accelerator is 256 KB and is shared by code and

data. Memory is not virtualized and is not protected. A typical memory map of an

SPU program is given in Figure 14 on page 145. There is a runtime stack above the

global data memory section. The stack grows from the higher address to the lower

address until it reaches the global data section. Due to the limitation of

programming languages and compiler/linker tools, you cannot predict the

maximum stack usage when you develop the application and when the application

is loaded. If the stack requires larger storage space than was allocated, there will be

a stack overflow exception. The current approach is to dedicate all the free

memory to the stack. New compiler tools also support the option to generate stack

boundary check code according to the process given in the SPU ABI document.

The SPU application will be shutdown when there is a stack overflow and a

message is sent to the PPE.

ALF allocates the work block buffers directly from the memory region higher than

the runtime stack. This is implemented by moving the stack pointer (or by pushing

a large amount of data into the stack). For ALF, the larger the buffer is, the better it

can optimize the performance of a task by using techniques such as double

buffering. It is better to let ALF allocate as much as possible memory from the

stack. Because of this, you must estimate the maximum stack usage information for

the user code plus ALF and programming language runtime code. Estimate the

stack usage and input the value into IDE. If the stack size is too small at runtime, a

stack overflow occurs and it causes unexpected exceptions such as wrong results

or a program crash. Be sure to leave enough local memory space for runtime stack

usage in the early stage of your coding and data partition designs. Reduce the

stack size to make more memory for ALF runtime usage only when the actual

requirement can be estimated more accurately.

144 IDE Tutorial and User’s Guide Draft

Because of SPE space limitations, the sum of data size partitioned into each

accelerator node and the stack size should not exceed 246 KBytes (The SPE space is

256 KB). The data size for each accelerator can be calculated as follows (for the size

of data transfer list, refer to “Data partitioning limitations” on page 143):

sum = 0;

for_each(IO_BUFFER)

{

 sum +=

 data_transfer_size;

Figure 14. SPU local memory map - common Cell/B.E. application

Figure 15. SPU local memory map - common ALF application

Chapter 17. Platform-specific constraints for ALF IDE Wizard on Cell/B.E. architecture 145

}

sum +=

STACK_SIZE;

if (sum >246 * 1024) return error;

IDE reports an error when this limitation is exceeded.

User-defined type size limitations

The size of a user-defined type should be a multiple of 16 Bytes. IDE does not

check this.

A tip for generating a 16 byte boundary type, is to declare data structure as

follows, and the compiler will generate a data structure with a size that is bounded

into 16 bytes:

User-defined type bounded into 16 bytes

typedef struct _my_type_t

{

 struct my_content_t

 {

 //Your parameters

 }c;

 unsigned char _pad[(sizeof(struct _my_type_t) + 15) & 0xFF10];

}

my_type_t;

146 IDE Tutorial and User’s Guide Draft

Part 5. Appendixes

© Copyright IBM Corp. 2006, 2008 147

148 IDE Tutorial and User’s Guide Draft

Appendix A. Related documentation

This topic helps you find related information.

Document location

Links to documentation for the SDK are provided on the IBM developerWorks Web

site located at:

http://www.ibm.com/developerworks/power/cell/

Click the Docs tab.

The following documents are available, organized by category:

Architecture

v Cell Broadband Engine Architecture

v Cell Broadband Engine Registers

v SPU Instruction Set Architecture

Standards

v C/C++ Language Extensions for Cell Broadband Engine Architecture

v Cell Broadband Engine Linux Reference Implementation Application Binary Interface

Specification

v SIMD Math Library Specification for Cell Broadband Engine Architecture

v SPU Application Binary Interface Specification

v SPU Assembly Language Specification

Programming

v Cell Broadband Engine Programmer’s Guide

v Cell Broadband Engine Programming Handbook

v Cell Broadband Engine Programming Tutorial

Library

v Accelerated Library Framework for Cell Broadband Engine Programmer’s Guide and

API Reference

v Basic Linear Algebra Subprograms Programmer’s Guide and API Reference

v Data Communication and Synchronization for Cell Broadband Engine Programmer’s

Guide and API Reference

v Example Library API Reference

v Fast Fourier Transform Library Programmer’s Guide and API Reference

v LAPACK (Linear Algebra Package) Programmer’s Guide and API Reference

v Mathematical Acceleration Subsystem (MASS)

v Monte Carlo Library Programmer’s Guide and API Reference

v SDK 3.0 SIMD Math Library API Reference

v SPE Runtime Management Library

v SPE Runtime Management Library Version 1 to Version 2 Migration Guide

v SPU Runtime Extensions Library Programmer’s Guide and API Reference

© Copyright IBM Corp. 2006, 2008 149

http://www.ibm.com/developerworks/power/cell/

v Three dimensional FFT Prototype Library Programmer’s Guide and API Reference

Installation

v SDK for Multicore Acceleration Version 3.1 Installation Guide

Tools

v Getting Started - XL C/C++ for Multicore Acceleration for Linux

v Compiler Reference - XL C/C++ for Multicore Acceleration for Linux

v Language Reference - XL C/C++ for Multicore Acceleration for Linux

v Programming Guide - XL C/C++ for Multicore Acceleration for Linux

v Installation Guide - XL C/C++ for Multicore Acceleration for Linux

v Getting Started - XL Fortran for Multicore Acceleration for Linux

v Compiler Reference - XL Fortran for Multicore Acceleration for Linux

v Language Reference - XL Fortran for Multicore Acceleration for Linux

v Optimization and Programming Guide - XL Fortran for Multicore Acceleration for

Linux

v Installation Guide - XL Fortran for Multicore Acceleration for Linux

v Performance Analysis with the IBM Full-System Simulator

v IBM Full-System Simulator User’s Guide

v IBM Visual Performance Analyzer User’s Guide

IBM PowerPC® Base

v IBM PowerPC Architecture™ Book

– Book I: PowerPC User Instruction Set Architecture

– Book II: PowerPC Virtual Environment Architecture

– Book III: PowerPC Operating Environment Architecture

v IBM PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual

150 IDE Tutorial and User’s Guide Draft

Appendix B. Accessibility features

Accessibility features help users who have a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

The following list includes the major accessibility features:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

v Keys that are tactilely discernible and do not activate just by touching them

v Industry-standard devices for ports and connectors

v The attachment of alternative input and output devices

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able/ for more

information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2006, 2008 151

http://www.ibm.com/able/

152 IDE Tutorial and User’s Guide Draft

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing 2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006, 2008 153

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

154 IDE Tutorial and User’s Guide Draft

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information in softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A complete and current list of IBM trademarks is

available on the Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe®, Acrobat, Portable Document Format (PDF), and PostScript® are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc., in

the United States, other countries, or both and is used under license therefrom.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal Use: You may reproduce these publications for your personal,

noncommercial use provided that all proprietary notices are preserved. You may

not distribute, display or make derivative works of these publications, or any

portion thereof, without the express consent of the manufacturer.

Commercial Use: You may reproduce, distribute and display these publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these publications, or reproduce, distribute

or display these publications or any portion thereof outside your enterprise,

without the express consent of the manufacturer.

Notices 155

http://www.ibm.com/legal/copytrade.shtml

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the publications or any data,

software or other intellectual property contained therein.

The manufacturer reserves the right to withdraw the permissions granted herein

whenever, in its discretion, the use of the publications is detrimental to its interest

or, as determined by the manufacturer, the above instructions are not being

properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF

THESE PUBLICATIONS. THESE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A

PARTICULAR PURPOSE.

156 IDE Tutorial and User’s Guide Draft

Index

A
ACCELERATOR_PARTITION 133

address
alignment limitations in ALF 133

ALF
buffer 123

computing kernel 140

data distribution 125

data distribution template 123

data layout 133

data partitioning limitations 143

matrix addition sample 127

parameters 137

partitioning 133

programming tips 133

type size limitations 146

user-defined type 140

wizard for IDE 123

ALF IDE
installing templates 7

ALF IDE wizard 131

using 136

alf_accel_intput_list_prepare 131

alf_accel_output_list_prepare 131

applications
running Cell/B.E. 17

architecture
supported by IDE 5

array
in ALF 125

attached Cell/B.E. simulator 15

authentication
configuring 25

B
BLOCK

limitations 143

BLOCK disribution 125

buffer 123

builder path 17, 21

C
C Development Tools

see CDT 3

C/C++
cell target application 17

creating local application 17

CDT 3

XLC error parser 23

Cell/B.E. box 15

compiler
error parser 23

computing kernel 140

configuring
authentication 25

debugger 17

path 17

CYCLIC distribution 125

D
data

distribution (ALF) 125

distribution limitations 143

layout 133

partition limitations 143

transfer list 133

wizard 133

debugger
configuring 17

debugging
Cell/B.E. applications 17

creating environment 15

documentation v, 149

SDK v

E
Eclipse

installing 7

supported version 5

uninstalling 11

environment
attached Cell/B.E. simulator 15

Cell/B.E. box 15

local Cell/B.E. simulator 15

remote Cell/B.E. simulator 15

error parser 23

F
FORTRAN 123

G
gdbserver 27

GNU tool
path for Cell/B.E. systems 17

path for PPC systems 21

GNU tool chain 3

I
IBM Full System Simulator

see simulator 3

IDE
definition 3

limitations 27

wizard for ALF 131

XLC error parser 23

installing
ALF IDE templates 7

IDE 7

JRE 7

J
Java

supported version 5

USE_JAVA_API option 27

JRE
installing 7

JVM
installing 7

K
key 25

known issues 27

L
limitations

ALF data distribution 143

ALF data partitioning 143

ALF type size 146

BLOCK distribution 143

GDB server 27

Java API 27

localhost 27

MAC address 27

remote launch directory 27

Linux
PATH variable 7

localhost 27

M
MAC address 27

O
OpenSSH 25

operating system 5

P
parameters

ALF 137

password 25

path
configuring 17, 21

PATH variable 7

private key 25

public key 25

R
remote Cell/B.E. simulator 15

remote launch directory 27

requirements
architecture 5

Java 5

operating system 5

© Copyright IBM Corp. 2006, 2008 157

requirements (continued)
software 5

S
sample

matrix addition in ALF 140

SDK documentation 149

Secure Shell
see SSH) 25

simulator 3

software
supported by IDE 5

SPE
limitations

SPE local memory 144

memory constraints 144

SSH 25

T
troubleshooting 27

type
user-defined 140

user-defined limitations 146

U
uninstalling

ALF IDE templates 11

IDE 11

USE_JAVA_API option 27

W
work-arounds 27

X
XL tool

path for Cell/B.E. systems 17

path for PPC systems 21

158 IDE Tutorial and User’s Guide Draft

����

Printed in USA

SC34-2561-00

	Contents
	About this publication
	How to send your comments

	Part 1. Getting started
	Chapter 1. Overview of the IBM SDK for Multicore Acceleration Integrated Development Environment
	Chapter 2. Supported operating environments
	Chapter 3. Installing IDE
	Troubleshooting: 32–bit IES Eclipse fails to load on 64–bit Fedora 9
	Troubleshooting: 32–bit IES Eclipse fails to load on x86 with RHEL 5.2

	Chapter 4. Uninstalling IDE
	Part 2. Using IDE
	Chapter 5. Creating a Cell/B.E. environment
	Chapter 6. Running IDE on Cell/B.E. systems
	Chapter 7. Running IDE on Power-PC systems
	Chapter 8. Using the CDT XLC error parser
	Chapter 9. Configuring public key-based authentication using OpenSSH
	Chapter 10. Troubleshooting and work-arounds
	Part 3. IDE tutorial
	Chapter 11. IDE tutorial
	Getting started - open Eclipse
	Getting started - select C/C++ Perspective
	SPU project - create SPU project
	SPU project - select the C Project Wizard
	SPU project - enter the project name and define the project type
	SPU project - configure SPU Project
	SPU project - add directory the SPU compiler include paths list
	SPU project - add the directory path
	SPU project - create a new source file
	SPU project - enter the new source file name
	SPU project - edit the source file
	SPU project - automatically build the project
	PPU project - create a PPU executable project
	PPU project - create the PPU project
	PPU project - reference the SPU project - step 1
	PPU project - reference the SPU project - step 2
	PPU project - finish creating the PPU project
	PPU project - configure the PPU project
	PPU project - select the C/C++ build options
	PPU project - view the Manage Configurations window
	PPU project - add the libspe2 library to the library linker list - step 1
	PPU project - add the libspe2 library to the library linker list - step 2
	PPU project - add the SPU executable as an embed SPU input - step 1
	PPU project - add the SPU executable as an embed SPU input - step 2
	PPU project - add the SPU executable as an embed SPU input - step 3
	PPU project - configure additional settings
	PPU project - create another new source file
	PPU project - enter the name for the new source file
	PPU project - edit the source code file
	Cell/B.E. simulator - create the local Cell/B.E. simulator
	Cell/B.E. simulator - configure the simulator
	Cell/B.E. simulator - configure the simulator options
	Cell/B.E. simulator - start the simulator - step 1
	Cell/B.E. simulator - start the simulator - step 2
	Create an application launch configuration
	Application launcher configuration - create a new C/C++ Cell/B.E. target application configuration
	Application launcher configuration - modify the debug configuration
	Application launcher configuration - select C/C++ application
	Application launcher configuration - select target environment
	Application launcher configuration - configure the Launch tab
	Application launcher configuration - specify resources to synchronize
	Application launcher configuration - select debugger and launch the debug configuration
	Debug the application
	Debug the application - switch to the C/C++ perspective
	Dynamic profiling tool
	Dynamic profiling tool - change SPU modes in the simulator window
	Dynamic profiling tool - change the SPEs to pipeline mode
	Dynamic profiling tool - launch the PPU application
	Dynamic profiling tool - view the results of the dynamic performance analysis
	SPU timing tool - static timing analysis
	SPU timing tool - view the SPU timing output
	Simulator console - toggle the simulator console view
	Simulator console - select the simulator TCL console
	Simulator console - view the simulator's TCL console
	Simulator console - use the simulator's Linux console
	ALF API wizard
	ALF API wizard - start the ALF IDE wizard
	ALF API wizard - enter a project name
	ALF API wizard - change general parameters
	ALF API wizard - add ALF buffers
	ALF API wizard - add the first buffer
	ALF API wizard - add a second buffer
	ALF API wizard - add the third buffer
	ALF API wizard - finish using the ALF IDE wizard
	ALF API wizard - ALF IDE wizard complete
	ALF API wizard - Create new launch configuration
	ALF API wizard - add a new upload rule
	ALF API wizard - create a new upload rule - step 2
	ALF API wizard - select the shared library .so file
	ALF API wizard - launch an ALF application
	IDE PDT plugin
	IDE PDT plugin - set up the C Linker flag
	IDE PDT plugin - set up the C compiler flag
	IDE PDT plugin - rebuild the project with PDT flags
	IDE PDT plugin - create a PDT configuration file
	IDE PDT plugin - open the wizard
	IDE PDT plugin - enter a file name
	IDE PDT plugin - select event groups
	IDE PDT plugin - select sub-events
	IDE PDT plugin - set colors for events
	IDE PDT plugin - modify the XML configuration file
	IDE PDT plugin - using the Profile Launcher
	IDE PDT plugin - launch the application with PDT support
	IDE PDT plugin - check generated trace files
	View the Eclipse preferences window
	View the IDE environment preferences
	Tutorial finished!

	Part 4. ALF for IDE programmer's guide
	Chapter 12. ALF for IDE overview
	Chapter 13. Data distribution overview
	Practice with data distribution directives

	Chapter 14. ALF IDE wizard overview
	Chapter 15. Programming tips using the ALF IDE wizard
	Chapter 16. Programming with ALF IDE wizard
	Using the ALF IDE wizard to create an ALF project
	ALF IDE wizard parameters
	Using user-defined types
	Example: Matrix addition

	Chapter 17. Platform-specific constraints for ALF IDE Wizard on Cell/B.E. architecture
	Data distribution limitations
	Data partitioning limitations
	Local memory constraints for SPE
	User-defined type size limitations

	Part 5. Appendixes
	Appendix A. Related documentation
	Appendix B. Accessibility features
	Notices
	Trademarks
	Terms and conditions

	Index

